Seventh FRAMEWORK PROGRAMME
ICT-2007-1.6
New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION
PROJECT

Deliverable D2.1- “Cognitive Engine - Experimental
Network and System Architecture”

Project acronymECODE
Project full title: Experimental Cognitive Distributed Engine
Proposal/Contract n0223936

Date of preparation of Deliverabl&ctober, 2009



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

Document properties

Document Number:

ICT-2007-1.6-223936 ECODE-D2.1

Document Title:

Cognitive Engine - Experimental Network and Syst
Architecture

Document responsible:

Benoit Donnet (UCL), Dimitri Papadimitriou (ALB)

Author(s)/editor(s):

Benoit Donnet (UCL), Dimitri Papadimitriou (ALB
Olivier Bonaventure (UCL), Pierre Dupont (UCL), Ju

Pablo Narino Mendoza (UCL), Damien Saucez (UC

Philippe Owezarski (CNRS), Johan Mazel (CNRS), Y

em

an
L),
ann

Labit (CNRS), Kavé Salamatian (ULANC), Ing-Jyh Tsang
(ALB), Werner Van Leekwijck (ALB), Amir Krifa
(INRIA), Chadi Barakat (INRIA), Konstantin Avratchenkov
(INRIA), Imed Lassoued (INRIA), Guy Leduc (ULG),
Wouter Tavernier (IBBT)

Dissemination level: PU

Security Type: PU

Status of the Document: Final

Version & Revision History | v1.1 — October 2009
v1.0 — February 2009

Deliverable D2.1 Page 2 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

Table of Content

DOCUMENT PROPERTIES ...ttt oottt ettt e e e ettt e e e e r e s e e e e e e e e e eenrnrnna e e e s 2
TABLE OF CONTENT ..ottt ettt e e e et e e et e et e s e s e e e e et eeeeeneeeeess e b s s e e e e e eeeeeeenennnann e aeeeeas 3
1. DESCRIPTION OF THE DOCUMENT .....uiiiiii ettt s e s s e e e e e e e e s eeensrnnn s aeeeeas 5
2. ACR OINY S Lttt e e oo oo oot o oo e ettt et e e e e e e e b h bR e e b et e e e e ettt e e e et eeeeaeeeeeaaannnn 6
3. INTRODUCTION . ..ttt et ettt et e et e e aeeaaa s e s s s aann s se e ee et eeeeteeeaeeeessssaesanaannnnnnnrnned 8
4. SURVEY ON MACHINE LEARNING TECHNIQUES........... oot 10
4.1 . SUPERVISEDLEARNING. ...ttt et eeetetteettttttsaa s e e e e eeaeeaeeeeeeeessssss e st e e e eeaeeeeessnsasn e a s s aaeaeaeeeeeseeeennnnnnnan 11
4. 2UNSUPERVISEDLEARNING .....tttutuuuatsaeaeateteeesstsssasasaaeaetaeeaeeeeesessssnnaas s aaaeeaeseeesnssnsnnanssaaaaesaseeeeeeeennnns 12
4. 3. ON-LINE LEARNING ...ttt eeieieieitttttis e e e e e e e e e eeee et eass s s s e e e e et et e eeaeee e e s s e e e e e e e e eaeeneeeeesnnnnnnaeeeeeeeeas 13
4.4 . DISTRIBUTED LEARNING ...t iiieiieeeeitttae e et e et e e e e e e e e e e e n e s e e e e e e e e e eeeeeneeennnnnrnnn s 14
5. ECODE ARCHITECTURE ...ttt e e e e ettt et e aeae et et a e e e e e e e eeeeeeansbanna s 15
.1 ARCHITECTURAL OUTLINE ...ttt e eeteeeeeeietittesa e s e e e e e eeeeeeteetaeaaasss e s e e e e e e e eeeeeeeesbabananaeeeeeeaeeaenaneeeeeesnnnnnnn 15
5. 2. SYSTEM AR CHITECTURE ...ttt ittt ettt eeettttttaa s e e e e e e e et e ettt beaaaates b aa e e e e eeaeeeeeeesbaba e e e eeeaeeeaaaaaeeeessensnnnnnnns 15
L T @ 1= V1= PRSP 51
5.2.2. DALA SITUCTUIES .....ceeeetetti e oot e e e e ettt ettt s s e e e e e e e et et e eebbenanasbb e s e e e e e aeeeeeeesbnbnn e e e e eaaaaeas 16
LI T | 01 1T = Tod 2O PPPRPPPR 18
5.2.4. Machine Learning ENQiNE COMPONENTS .. vrrrrrrrnrneeereeeiertaaaaaaaaaaasassaaaasssssseeeeeeeaaaaaaaaaaas 18
5.3 . MONITORING ENGINE......ciiiiieieieitiiis ettt e e e e et et e e e e b e e e s e e e e e eeeeeeneneensrernnn e e e aeeeeas 19
5.3.1. Passive MONitoring POINES ..........coiiiieiriiiiccc et ee e e e e eeee s 19
5.3.2. ACtIVE MONITONNG POINES......uuiiiiiiiieiees it r e e e e e e e e e e e e s s esssar e e e e e eereeeeeaaeaeeaaeseesaaaanns 20
5.4 NETWORK ARCHITECTURE......uutttttttttttettetetteetaaeasaaassssassasnnseeeeeetteeteeaeaeassssaasaaaasnnssnbrnbeeeeeeaeeeesessanss 20
L N o Yo 1 1T PP PO PPPPRTPPPPRRP 21
5.4.2. Information Exchange and DiStriDULION . cumume..vvvvrriieiieiiiriieie e e e e e e e 21
6. SECURITY AND MONITORING ..ottt ettt e e e e e e e e e e e nnnnrn s 23
6.1. ADAPTIVE TRAFFIC SAMPLING ... cetttttttuaeteeeeetetteeatttstaasaaseaaaasaaeeataeeestessanans e aaaaaaseeeeessstnnnnnananasaeseens 23
B.1.1. USE CaASE DESCIIPLION ....ceiiiiiuittet e sttt e e e ettt ettt e e s sttt e e e s s beeeeesssbb b et e e e s aasbbe et e e e s annnnneeaeean 23
6.1.1.1. System's INPUL INTOIMALION............uiiiieieieeee et e e e e e e e e e e e e s saenaneeeeas 23
6.1.1.2. System's OUtPUL INFOMMALION ...........eii ettt e et e e e e e e e e s antbe e e e e e e e eaannees 23
6.1.1.3. Interactions between the Decision Engine and the Forwardintf@RENgIiNes. ..........cccccovvrereinineeninnen. 23
6.1.2. Interaction with Learning MOGAUIE.......ccceeriiiiiiii i e e e e e e e e e e e e e e 24
6.1.2.1. Machine Learning Technique(s)
6.1.2.2. THE LEAIMING StAGE.... . ueteeiitret e s sttt e s ettt e e ast et e e s b et e e aane e e e abb et e e as b e e e e e b br e e e nntreeennnes 24
6.1.2.3. Inputs Variables to the Machine Learning MOAUIE.............cccoiiiiiiiiiiieiec e 25
6.1.2.4. Outputs Of the PrediCtion StAgE ... eeeeeeeeiii e e e e e e e e e e e e s e aaaeaeeeeaan 25
6.1.2.5. LeArning PhaS@ SPEEU.........uuiiiiiiitceeeeee ettt et e e sttt e st e e et abee s 25
6.1.2.6. Description of TrainiNg SAMPIES .........ue e e e e e e e e e ee s 25
6.2.GLOBAL/ACTIVE MONITORING .. ttttteettettteetaaaaaaaaeaaaaaaa s et beeeeeeaaaaaaaaaaaaaasaaaaannnnsbbbbesbaseseeaaaaaasssanan 27
6.2.1. USE CaSE DESCIIPLION.....ceiiiiiiiit s ettt e e e e e e s e e s e e e e eaaebabb b bbb e eeeeeeaeeeaeas 27
6.2.1.1. Passive and active measurements capabilitiesS and.iSSUES..........c.c.eveeiiiiiiiiiiiiiieeee e 27
6.2.1.2. Global Monitoring SyStem COMPONENIS. ..........u ittt e e e e e s s enreee e e e e e e s aabbreeeeeeeeeas 27
6.2.2. Interaction with Learning MOAUIE........ccccooiiiiiiiiiiii e 30
6.3  ANOMALIES DETECTION ...ttt ittt ee et eeettttttae s e e e e e e e ettt eebemeantte s e s s e e e e e e e et eeeesbaba e e e s e eaeeaaaaaneeeeessnnbnnnnnnns 30
6.3.1. USE CaSE DESCHIPLION.....ceiiiiiiiiit s ettt et e e e e aas e e s e e s e enaebab bbbt e e seeeeeeeeeaeas 32
6.3.1.1. Anomaly Classification: The Required Next Step in AmpRatection ............cccccvvveeeeeiiiciiiiieeeee s, 32
6.3.1.2. Active Monitoring Applied to Anomaly DeteCtioN..........ooiiiiiiiiiiiiieieiee e 32
6.3.1.3. Two dimensions ADS (Anomaly Detection SYSIEM) .......ueiiiiiiriiiiiiiiiiiee e 33

6.3.2. Interaction with Learning Module
6.3.2.1. Distributed Anomaly Detection

6.3.2.2. Traffic anomalies detection ..............cceeeevveernnneen.
6.3.2.3. Active monitoring applied to anOmMaly AEECTION . ceeeverieeiiiiee ettt 38
7. ROUTING .ttt oottt e oo oo e e et ettt ettt bbb e e e s o e e e e e e e et eeeaebebb e e s eeeaeeaeeeensnnnnnnes 39
T L BGP e ———— e e et e e e e e e e e bbbt e e et et e e teeeaaean 39
7.1.1. USE CaSE DESCIIPLION ....ceiiiiiitttt e sttt e e e sttt e e s sttt et e e s sbeeeeessebb b e e e e e s aanbbn e e e e e s annnnneeeeeas 39

Deliverable D2.1 Page 3 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

7.1.1.1. Path EXPIOration OVEIVIEW.........cciiiuuiiieeeeeeetetteeeeeesieititeeeeeaeeaasstaaseeetasssassssseetaaeesassnstbssseaaeeeesanisses
7.1.1.2 BGP EVENt CharaCteriZatioN..............oocueecmrieiiiiie ittt
7.1.2. Interaction with Learning MOGUIE.......cccoa e e e e e e e
7.1.2.1. Input to the Machine Learning MOAUIE ..............coueeeeeiieeiiiiier e e e s e e e
7.1.2.2. Output of the Machine Learning Module
7.1.2.3. Classifying BGP Events .........ccccccceeiiininnes
7.1.2.4 Interaction with the Routing System.............
7.1.2.4 Machine Learning Process and TEChNIQUE ........coiiireear i 44
7.2.NETWORK RECOVERY ANDRESILIENCY ......uutiiiiieiiinrieeee s e e s e s s e e e eennne e e e s e snnee e e e e e ennee s 44
7.2.1. USE CaSE DESCIIPLION ....ceiiii ittt sttt e e e ettt e e s st et e e e s sbeeeeesaebbe e et e e s aasbbeeeaeesannnnneeeee s 44
7.2.1.1. OSPF Event Modeling and CIUSTEING........ i . ieeeeee ettt e e e e e e e e e e e e e nneeeeeas 44
7.2.1.2. OSPF Cycle Detection and PrediClion ... ..ot e e ee e e e e e 47
7.2.1.3. Minimizing Packet Loss During Routing Table SWitCh-OVerl .........ccoiiriiiiiiicc e 47
7.2.2. Interaction with Learning MOGAUIE.......ccceeii i e e e e e e e e e e e e e e s
7.2.2.1. Inputs to Machine Learning MOUUIE.............. o erriteiiiieee ittt e e e sneee e
7.2.2.2. Output of the Machine Learning MOAUIE ..........commmrrerieiieeeiiiiiiiiiee e e e ee e e e e e et ereaaeeessennns
7.2.2.3. Interaction with the Routing System............
7.2.2.4. Machine Learning Process and Technique

8. PATH SELECTION ...ttt ettt et e s e s e en e e e e s s snnne e e e e s ennnne e e e e s annnnneesd

8.1.INFORMED PATH SELECTION . ..tuuutittttuuieetettunteesestunseesestuneesassansanseessstanaesastanaaesassseerestaaessnnssnnaeerens
8.1.1. USE CaSE DESCIIPLON.....eceviiiii e et e e e e e eeee e et ee et e e e sttt e e e eeeeaaaassesaesasassanssnnbeereasseeseeeeeees
8.1.1.1. Path Selection Requirements
8.1.1.2. IDIPS Server.......cccccciiiiiiiiiiii e
8.1.1.3. Cooperation DEtWEEN IDIPS SEIVEIS ... oeieeeee ettt e e e et e e e e e e e e 52
8.1.2. Interaction with Learning MOGUIE........ccoa e e e e e e e 53
8.1.2.1. Measurement prediction and adaptation ........cccccccceiiiiiiiiiii e 53
8.1.2.2. FINAING I0W delay PAtNS........e ittt e e e e e e e e e e e e e e e e e e nnnaeeeeas 54
LS T O 01 1 N 1A =] | 0 N 55
9.1.PROFILING AND ACCOUNTABILITY 1tutetttututeeeantuesestastaeeseasuneeseseanuaeesestnnaessestnneesestaeesestanaeesarennes 55
9.1.1. USE CASE DESCIIPLION.....eeiiiiiiiie s ettt e et e e e e e e s e e s e e s e naanbeb bbbt beeeeeeeaeeeaeas 55
9.1.1.1. Who is Accountable, for what and hoOw t0 MEASUIE ........cceevnriiiiiiiiii e 56
9.1.1.2. Network Traffic CharaCteriZation ..........cceeeeiiiiiiiiiiieeeeeeeee e s e e e e e e e e e aeaeas 56
9.1.1.3. ProOfile MOUBING . ...ceeeiieeiiee ettt ettt e e ettt e e e e e e e et bt te e e e e e e e e e aansbnneeeaeaaeeesannns 56
9.2.ECODEARCHITECTURECROSSREFERENCE ......cctitttiieriitiieesettteeessstsaeesesasunneesestnnaessesnnaaesesrnaaeeeees 57
9.2.1. SYSIEM AFCNITECTUIE ... ..t eeece e e et e e e et e e e e e e b e e e e e e s nerees 57
Lo I \\ L= V(o] QAN (o] 11 (=Tt 11 (O 58
9.3.INTERACTION WITH LEARNING IMODULE. .....ccttuuiieiitiiieetiti s e et et s e e s esbaans s e s e asa s s e s eaasnseasastnseasassnaeeeenen 59
9.3.1 Type of Routing/Forwarding ENQINE......ccocei ittt e e eeee e 59
9.3.2. Inputs to the Machine Learning MOAUIE e .ccooiiiaiaiiiiiei it 59
9.3.3 Outputs to the Machine Learning Module..................cciiiiiiiiiiiecceeeee e 59
9.3.4 Interaction with the Routing/Forwarding ENEIN...............uuiieiiiiriiiieiieeee e vvvveveeeeeeeees 60
10, ANALYSIS GRID ... ettt e e e s e s e e e e e e e e e e e aa bbb e e seeeaeeeeeeeerares 60
LO. 1. FUNCTIONAL ANALYSIS ..iettteeeeuetunuaaaeseeeeeteeeesaentnsannaaaaaaasseeeaeteeeeesnssssnnasseeaaerereeesnstnnnnnsssnnnsssseeeees 60
0 0 O 1) = - PSSR 6l
0 0 2 |V = 1 o T o] o T | Y2 SR 61
10.2. PERFORMANCEANALY SIS ..ttt etttttiteetett s eetett s e e testa s eeseetanta s eeeastan s aesastanaesestanaesestnnaesennsssnnsareenen 64
10.2.1. PerformanCe ANAIYSIS............oi i mmmmmmeeeeiaiiieeee e sttt e e st e e e s e e e e s e sbb e e e e e s e snnbbeeeeeeaannees 64
JO.2.SENSITIVITY ANALY SIS . ittuuieiettuuieetetttteesetttteseeetattaaeeaetan e eeeettnaaeeetnnreeestnnaeeesrnaeaaeeesnnaeeeesnnns 64
J0.2.1 OVEIVIEW . .eevtiieeeeetie ettt eeee et e e ettt e e e e e et e e e s eaba s e e s esbanaaaseesssbansasssstansesssstanseerestansaesenen 64
10.2.2 Sensitivity ANAIYSIS MEINOUS .......ueeeeieeiiiiiiiee e 65
0 T @ 1V 11 0 66
REFERENGCES . ... . oo s oo e e e e ettt e e e e e e e e e eeee e e et e eaeae st et e seeeeeaeseeeesstataanaaeaeeanans 67

Deliverable D2.1 Page 4 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

1. Description of the Document

This document is the ECODE deliverable D2.1. It provides an insighthet experimental
network and system architecture we will develop throughout the whole projecbdurati

In this document, we provide a general overview of machine learaahgiques as well as a
complete description of the ECODE architecture at two legggem and network. Note that
this architecture represents our current view of the project. Throutt®ytroject duration,
we will evaluate how feasible is this architecture and adagtdording to the experimental
results. Our architecture is thus not fixed but rather a prageessocess. The objective is to
have, by the end of the project, a workable (and implemented) architecture.

As ECODE is an experimentally-driven project, this document previde accurate
documentation of each use case, as well as how each use eazetsnvith the Machine
Learning Engine we introduce (initially referred to as Cognikvgine). In this document,
we chose to cluster the various use cases in four groups:

» Security and monitoringThis corresponds to use cases al, a2, and a3, i.e., the
development of an autonomous system for network monitoring, traffic managgeme
and anomalies detection.

* Routing This corresponds to use cases cl and b2, i.e., the development ofoa solut
for speeding up the BGP path exploration process and allowing fast network recovery.

» Path selectionThis corresponds to use case bl, i.e., the development of a solution for
allowing application (of any kind) to rank paths according to particular exiteri

» Accountability This corresponds to use case b3, i.e., the development of a solution for
correlating profiles with subscribers’ usage and their impact on the hetesmurces.

Finally, we also provide an analysis grid that will be used throughowttbke project for its
evaluation. The analysis will be on functionalities and performance.

This deliverable is organized as follows: Sec. 2 provides eflitie various acronyms used in
this document; Sec. 3 introduces the document; Sec. 4 provides avargew of machine
learning techniques; Sec. 5 discusses the ECODE architectare§ &etails the security and
monitoring use cases, while Sec. 7 is dedicated to routing use case8,t8 path selection,
and Sec. 9 to accountability; Sec. 10 provides the analysis gridyfiBalt. 12 concludes this
document and summarizes its main achievements.
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2. Acronyms

AAA Authentication Authorization and Accounting
ADS Anomaly Detection System

AS Autonomous System

BGP Border Gateway Protocol

CPE Customer Premise Equipment
DAG Data Acquisition and Generation
DDoS Distributed Denial-of-Service
DHCP Dynamic Host Configuration Protocol
DoS Denial-of-Service

DPI Deep Packet Inspection

DR Designated Router

E2E End-to-End

ECN Explicit Congestion Notification
EKF Extended Kalman Filter

EM Expectation Maximization

ERF Extensible Record Format

FIB Forwarding Information Base

FUP Fair Usage Policies

GPS Global Positioning System

ICMP Internet Control Message Protocol
ICMP-SEQ Number of Sequence ICMP

ICS Internet Coordinate System

IDIPS ISP-Driven Informed Path Selection
IDS Intrusion Detection System

IP Internet Protocol

ISP Internet Service Provider

KIB Knowledge Information Base

KLT Karhunen—Loéve Transform

KP Knowledge Plane

LISP Locator/ldentifier Separation Protocol
LM Learning Method

LRD Long Range Dependence

LS Link State

MA Multi-Access

MCMC Monte Carlo Markov Chain

MP Measurement Point

MPLS Multi-Protocol Label Switching
MRAI Minimum Route Advertisement Interval
MTR Multi-Topology Routing

OCR Optical Character Recognition
OSPF Open-Shortest Path First

P2P Peer-to-Peer

PBA Profile-Based Accountability

PCA Principal Component Analysis

PDU Protocol Data Unit

PIB Path Information Base

PIC Path Information Collector

PLR Packet Loss Ratio
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PPS
QoS
RIB
ROC
RTT
SRG
SVM
TCP
TIV
TLS
TTL
UDP
WAN
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Pulse Per Second

Quality of Service

Routing Information Base
Receiver Operation Characteristic
Round-Trip Time

Shared Risk Group

Support Vector Machine
Transmission Control Protocol
Triangular Inequality Violation
Transport Layer Security
Time to Live

User Datagram Protocol

Wide Area Network
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3. Introduction

Since the early 90's, the Internet has known an impressive growth, anuvadays, victim of
its own success: its size and scale render the deployment afetewrk technologies very
difficult while it is experiencing increasing demand in terofisconnectivity and capacity.
Indeed, although the current Internet does work and is still capalbldfithing its current
missions, it suffers from relative "ossification”, a conditionewe technological innovation
meets natural resistance, as exemplified by the lack of wide deghbyhtechnologies such
as multicast or the new version of the IP protocol (IPv6).

As a result of the Internet growth and the increasing commumicatiquirements, a lot of
incremental solutions have been progressively developed and deployé&mmvahal Internet
to cope with the increasing demand in terms of user connectivity gratitga(see for
instance [14]). There is, however, a growing consensus among thefiscemti technical
community that the current methodology of ~“patching” the Internet wilb@aible to sustain
its continuing growth at an acceptable cost and performance. dinstaeting from five base
design principles (modularization by layering, connectionless packetrftinga end-to-end
principle, uniform inter-networking principle and simplicity prin@pl the Internet has
progressively become an infrastructure that is architecturalhg womplex to operate. This is
mainly due to various layer violations (e.g., complex cross-layer desigsupposedly
optimize network and system resource consumption, the proliferativariofus sub-layers
(e.g., Multi-Protocol Label Switching [1], or Transport Layer Secui2ly to expectedly
compensate for intrinsic shortcoming in terms of forwarding performamtke security
functionality, IP addressing space overload (including network graph lpcatde identity,
connection termination), and routing system scalability and qualityalimits (e.g., BGP path
exploration and oscillations [3]) to name a few. This complexity pregely impacts the
Internet robustness and reliability and in turn impacts itdabdity (resulting from the
violation of the Occam's razor simplicity principle also known as tRebustness through
simplicity” principle [4]).

Hence, although the design principles of the Internet are stitl, thkre is growing evidence
that the resulting design components, as defined today, face cejjtstivebtechnical limits.
On the other hand, certain objectives of the Internet are no longpteddto users' new
expectations and behaviors. In other terms, the current Internéeette is progressively
reaching a saturation point in meeting increasing users' expestatnd behaviors as well as
progressively showing its inability to efficiently respond to new techncédgihallenges (in
terms of security, mobility, availability, and manageability) andaseconomical challenges.
Even worse, misguided attempts to sustain the Internet growtherksnoto progressive
violation and erosion of the end-to-end principle. Sacrificing thetesghd principle has in
turn resulted in decreasing the Internet availability, negativepacting its robustness and
scalability as well as making its manageability more complexr @we, the erosion of the
end-to-end principle has also resulted in the proliferation of foepeer and application-
specific overlay networks that are progressively substituting theceedet IP networking
layer by an end-to-end applicative communication layer. Indeed, mamyapplications
provide their own path selection to ensure proper connectivity andyqualgulting in an
ineffective network level resources use [30, 31, 32, 33].

With an increasing reliance on the Internet infrastructure fon@wic and social activities,

the impact of network-wide terror in the form of worms or visusealso increasing [34, 35,
36]. Improving the security and accountability of the Internet is tblughe utmost
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importance. With the growing penetration of Internet connectivity rimgeof geographical
size and the number of connected users and the fact that usemgcasionally connected

to always connected, the Internet infrastructure is also growimggaographical distribution,
number of network elements and heterogeneity of physical connetipiigal fiber, twisted

pair, co-axial cable, wireless, etc.). The Internet infragireqgrowth makes its manageability
and configurability increasingly complex. It is thus expected thabperating cost of the
Internet technology will start to increase more than proportirallthe number of nodes
resulting from {) the additional patches that will have to be developed, deployed and
operated, i{) the growth of the infrastructure (in terms of number of autonomysterss,
routers, and routes), andi) the increase in both the number of connected users and their
activity (in terms of time, location and traffic, and the hetenegg in application needs).
This results in increasing complexity and decreasing maintairyabilituser's satisfaction
while keeping an openly accessible, neutral, and generic Internet infrastructure

In this context, the main objective of the ECODE research prigertto introduce a new
architectural component that allows to transpose the high-level iwbgetnd constraints of
what the Internet is supposed to deliver to the end-user into lewar-bbjectives and
constraints than can be enforced by means of the newly proposed compodeivea that,
ii) to determine how the proposed component can ensure the Internétesirghvhat it is
supposed to deliver and performs as expected to satisfy the end-Llssrarchitectural
component will be realized by means a loosely coupled cognitivensystethe node level,
the introduction of the cognitive engine implementing machine learnaimgitgues (and thus
referred to as machine learning engine) is expected to imprayextend the overall Internet
controllability capabilities as well as reducing their résglcost. Indeed, this step evolution
Is expected to

» Limit the cost of the Internet infrastructure growth;

e Limit the cost of its operation (compared to the approach that woohgist in

continuously patching existing routing equipment);
* Provide adequate solutions to the existing and foreseeable upcomimgetinte
challenges.

The overall objective is thus to ensure the durability of the Intéaneltso preserve its design
principles underlying its current architecture) by removing compldsatyr existing routing
system components. In other words, adding a machine learning engindritethet routing
equipment would in turn add functionality to the global infrastructure whdetaining strict
bound on complexity. At the same time, this additional component would adecre
significantly the equipment and the operational cost as weleasamplexity of the Internet
compared to an infrastructure that must provide for the sameduoatity with continuously
patched routing equipment.

The remainder of this deliverable is organized as follows: @edtiprovides a broad view of
machine learning techniques; Section 5 discusses details ofGO®IE architecture on a
system and network point of view; Section 6 deepens the security antbmmgnuse cases
while Section 7 details the routing use cases, Section 8 is gratiheselection use case, and,
finally, Section 9 is about the accountability use case. Each useixgwesented in a
networking point of view. In addition, we explain how the use case wiltaatewith the
machine learning module. We further explain how the use case carieeated in the
ECODE architecture depicted in Section 5; Section 10 providessl &or evaluating how the
various use cases interact with the ECODE architecture. irgdiction 11 concludes this
deliverable.
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4. Survey on Machine Learning Techniques

Machine Learning can be considered as a subset of Artificidligetece, statistics, and
applied mathematics. It aims at building computing machines taat End improve their
responses by learning from experience [21]. Machine Learning andnPR#eognition are
intimately related disciplines [22], since Machine Learning dhjeds to learn to recognize
patterns in order that when new samples are presented to the sy#terfuture, the machine
Is able to either classify this sample, among a series ddedasupervised learning), or to
discover inherent patterns into the data in order to elucidateeslas clusters from the data
(unsupervised learning).

It is possible to subdivide the Machine Learning techniques, into theniaur types of
techniques described below [22]:

1. Template matchingin the template matching approach, an incoming sample is
compared against ‘templates' that describe each one ofabseglinto which the
sample is going to be classified. Some algorithms can be appliegimpensate for
individual sample differences against the template that cae. arhis was the earliest
type of Machine Learning/Pattern Recognition approach, which had very loer pow
of generalization that is, depending on the problem, the performance classifying
unseen samples was low. Also, usually these techniques are not coprestdnce of
noise. It is still used in simple cases.

2. Syntactic approachThe syntactic approach is concerned to finding the minimum
atomic components of a particular problem, calenitives and then finding the
rules that govern the pattern formation made of these primifie=se rules are called
agrammar since they describe how a pattern is made by smaller components, just like
words generate a sentence according to some rules. An intergsgiegl @f this
approach is that it allows to gain insight into how these patterns are generated.

3. Neural NetworksThis learning paradigm is inspired from a simple model of h@w th
brain works. By using many parallel computing units, it is possibleatm leomplex,
non-linear, input-output relationships. It also has been demonstratechebeal
networks can approximate any function with arbitrary precision [23]s Tiki
extremely useful, since neural networks can also be used in regression problems.

4. Statistical LearningThis is the most popular approach to machine learning. This short
survey focuses on Statistical learning. This approach reliesstatistical description
of the process being examined. Usually, the most relevant informatfeataresof a
process are obtained through a transformation process first (presgngge Once the
features are obtained, probabilistic and statistical modelsesm@oyed to infer
probabilistic models that, based on the features, will classifga@ming sample. This
process of learning is shown on Fig. 4.1.

Raw Data Feature Classification

Extraction > Learning Algorithm e Final Decision ——

¥

3

Training
Data

Figure 4.1 Learning process
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Statistical learning can be divided into two big types, whichsagervised learningand
unsupervised learningoth have advantages and disadvantages.

4.1. Supervised Learning

The objective of supervised learning or teacher learning isitaastpredict the output for a
novel (never-seen-before) input, after learning on the training skttaThis predictive
technique consists in creating and predicting value of function that &skenput a training
data set that is completely labeled by pre-defined clasikesa( teacher) that provides as
output a continuous value (i.eegression problejnor, predict a class label of the input object
(i.e., classification problem [6, 7, 8]. Typical problems tackled by supervised learning
approaches are regression problems and classification problems (pgedlictass label of the
input). In the network area supervised learning may be used to recoghwzeknenis-
configurations, detect intrusions, etc. The main downsides to supel@@&adg are that the
system needs to go trough a training phase requiring a lot of lalzkedrdd it may not work
well for predicting values from input data following a differeligtribution than the training
data. Some examples of supervised learninghainge Bayes classifieLinear Discriminans
andSupport Vector MachindSVM).

A naive Bayes classifier assumes thatdltemponents of the feature vector are conditionally
independent given the class labels and applies Bayes' Rule togetthethe conditional
probability rule, to find the probability that a particular sample beloogs particular class.
Assuming there ark classes, the probability that a particular sample belong<lasski is
found by using the Bayes' Rule and applying the conditional probabilitytad&press this
probability as the product of independent conditional probabilities ofeidueires. All the
parameters that are required to calculate the probabilitplateened from the training set,
using the relative frequencies in the set, and finding the maxiikahinood, and sometimes,
numerical algorithms such as gradient descent, to maximizek#idgdiod function. Despite
its apparent simplicity, a successful example of using the Balgssifier is junk email spam
filtering [24].

.; !
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x X % ::
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- L
Linear Discriminant Maximum Margin Classifier

Figure 4.2 Classification

Linear Discriminants attempt to find the hyper planes that bestrate different classes, as
represented by their features drdimensional space. This is possible, if the features they
represent can bénearly separatedinto classes. There are various methods to find the

Deliverable D2.1 Page 11 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

parameters of the hyper planes, the most popular being the perceptrathrald@s].
Successful applications of Linear Discriminants can be found in face recognition.

Support Vector Machines (SVMs) are considered to offer stateeddrt classification results.
SVMs belong to a more general class of linear classifielgedaaaximal-marginclassifiers.
SVMs try to find the plane that maximizes the distance betweemtlosest sample in each
one of the classes and the separating hyper plane, thus, maximizingrgie. tas also
possible, by application of the kernel trick [26], to transform théufea via a nonlinear
transformation and perform the classification linearly in thensfia@med space. This
transformation, allows for better interclass separability amyncases. A simple example can
be seen on Fig. 4.2. Successful examples of application of SVM ltaveela problems
include Facial Expression classification [27], and optical character réicogf@CR) [28].

4.2 Unsupervised Learning

Unsupervised learning, being at the other end of the scale, alloesifong useful structure
without labeled training data/classes, optimization criterieediback signal, or any other
information beyond the raw data and grouping principles. This descripttbhmidee is
typically used for applications requiring clustering, hierarchiclistering (taxonomy
creation), novelty detection (“meaningful outliers”) or trend debect(extrapolation).
Anomaly detection is an example of a network application where unssgek learning may
be used. The objective of such approaches is to develop methods thateréam
simultaneous unsupervised learning at all levels of abstractiomiéounimportant variation
while exposing important variation

One example of unsupervised learning is k-means clustering. K-rolestering attempts to
find an optimal (in some sense) partition of the input space kinttusters. To find the
clusters, a set of-centers are defined and the distances of the samples toether are
calculated. The most usual distance measure is Euclideancéis®hen, differerit centroids

or centers of the clusters are iteratively tried until tretadices between centroids and the
samples reach a minimum [29]. Despite its simplicity, thas@hm has worked quite well in
many situations. It has been successfully applied to speech recoggetiimme data analysis
and ecosystem data analysis among others. In Fig. 4.3, there is areatldalstration of a
cluster of different data classes. The actual shape of theesphrehyper spheres depends on
the distance measure used, either if its Euclidean or Mahalatistaisce, among many other
possible distances.
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Figure 4.3 Cluster of different classes
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There is a clear trade-off beyond these two techniques (to be seextramities of the
machine learning technique spectrum). Indeed, unlabeled data are péemtliful whereas
labeling of a large set of examples is time-consuming (condition wésgfied in networking
environments). Hence, labeled data are expensive. The trade-off consisiglg semi-
supervised learning (also called partially-supervised techniquésy beth labeled and
unlabeled data together [9, 10]. The main idea behind this approach is ¢olyse small
number of labeled examples for bootstrapping and make use of anlargeer of unlabeled
examples for learning.

One objective of the project is to investigate via experimentsagiicability of semi-
supervised learning approaches to network problems in the area ofriraéisurement)(and
the area of anomaly detection (network security) at the level ofidudil packets, traffic
flows, protocol messages and their processing (

1. Predicting the current state of a path based from past measusefRTT, bandwidth,
etc.) is, from a machine learning point of view, a particukgression problem for
time series. Learning methods can be used here to induce a modtelpést
observations and to predict the future state(s). The challengbdevtth make these
predictions robust from a limited amount of previously analyzed data $emi-
supervised setting, a relatively new but growing framework in machine learning [9].

2. Anomaly detection systems benefit from training on existing datlier learning)
but also require some level of autonomy in learning, as the netwdrkenslubject to
new types of attacks/anomalies. The objective is to develop né&vodsethat perform
simultaneous semi-supervised learning at different levels ofaakistn (e.g., packet
vs. flow) to hide unimportant variation while exposing important variatioris
believed that by performing anomaly detection at different levelglt®al anomaly
detection can be made more robust by exploiting regularities at the multigke leve

4.3. On-Line Learning

In off-line learning data is collected, possibly (manually) labeded] then provided to the
learning algorithm in a batch process. In off-line learning algmst it is assumed that the
time to search through the space of knowledge structures is not stiiaritggg. This allows
for the learning system to learn the structure that minintlzegrobability of faulty system
outputs. The off-line learning mechanisms may be less applicaldgnamic networking
environments where possibly a lot of data is generated at evesyiristance and where
resources and thus also processing capabilities are fairlgdimitere is thus a clear need to
move to on-line learning mechanisms that are able to procdssme data streams in a real-
time fashion (no built-up of unprocessed data).

As opposed to the problem mentioned in the paragraph above with respegetamounts of
available data that require processing, there is another problemiltireeed to be addressed.
This problem arises from the fact that training data aboutiapevents (e.g., anomaly
detection) is fairly sparse because their occurrence is not frequent. Time s§istbus not be
able to identify certain traffic patterns the first tirhey are encountered. A mistake-bounded
criterion (how many mistakes does the system make beforerislearecognize the pattern?)
will have to be used to evaluate different learning techniques.

Research on on-line learning techniques will be of particularesttdor applications that
require adapting the model in a possibly changing environment (in particatapath
availability estimation and path performance monitoring). Simgeession models are often
estimated via (regularized) least-square methods. Stochaatiemnr descent techniques are
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available for estimating their parameters on-line. On-linenlegris still a difficult task
however for more advanced regression methods. Most kernel methods dacenstpresent
the data through a Gram matrix made of pair-wise similafigs/een individual data points
(simple dot products in the linear case). Some methods explicidly vdéh well-selected
subsets of the data (e.g., [11]) but their objective is to reduce thmutational complexity of
the estimation algorithm not necessarily to avoid the explicit storage algtast

4.4. Distributed Learning

While the majority of the machine learning problems is being adsltess a centralized
fashion, this no longer holds for massively distributed environmentsasunktworks where
the shear amount of data being produces by sensors/detectors/etc. wdeddl notscalable
solutions. Hence, an additional point to be studied concerns distribeeding: the

distribution between several learners, the so-called machinengangines in the ECODE
project. Distribution may concern the data to be analyzed and/or predicted.

Again a networking example can be found in anomaly detection systems caogreration
between nodes is mandatory to be able to detect certain typémadsaand where local
anomaly detectors may benefit from relevant traffic models learned elsewher

Distribution may concern the data to be analyzed and/or predictealsbuand if needed, the
induced regression models or some knowledge deduced from themalntepresentation.
Whereas distribution at the data level does not prevent frong wsistandard learning
algorithm (and can only helps this algorithm to build a model from metevant
information), the availability of general distributed learning alhoms is still an open
research issue.
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5. ECODE Architecture

5.1. Architectural Outline

The most notable use of learning paradigm applied to networking isnthed Knowledge
Plane (KP) as proposed by Clark et al. [5]. The driving idea of the KB iaugment the
network control system with a higher-level structure that addsessues of ~"knowing what
is going on" in the network. Its main goal is to build a new generatioptafork that cam)
drive its own deployment and configuratibndiagnose its own problenis) make defensible
decisions about how to resolve them. The KP, by sitting on top of trenteontrol system,
is also intended to break the boundaries between the control and managgstem of the
Internet (current Internet management system is driven by weakling between its
different administrative units).

Architecturally, the KP, that embodies cognitive tools and learningséparate structure that
creates, reconciles and maintains the many aspects of a higjivieave and then provides
services and advices as needed to other network elements. The core foundation o$ ite KP i
ability to integrate behavioral models and reasoning processesnetwarked environment.
Compared to the KP approach, we believe that a cognitive routingnsylstaild be driven by
three fundamental principles. First, a cognitive routing system shoutduseusedmodularly
instead of relying on a unified approach for functional but also prad®atlopment and
deployment reasons. Second, the system shoukk@mentedo that it relies on a relative
view of the network environment (in particular, from the routing petspg¢ instead of
requiring a global network view to operate, resulting in scaling and depldymsues.
Finally, it should be built taking into account the inherent distributezpepties and
capabilities of the routing system (i.sizeability instead of being constructed as a uniform
and ubiquitous two-dimensional structure that does not account for thalgaéicin of the
routing functionality (e.g., intra-domain vs. inter-domain).

We describe of the ECODE architecture at two-levelsSystem Architecturevel (see Sec.
9.2.) and thé\etwork Architecturdéevel (see Sec. 9.3.).

5.2. System Architecture

5.2.1. Overview

The proposed methodology relies on cross-fertilization between the netgankil machine
based techniques to form a cognitive routing system answering nowadaysoopérnd
tomorrow's Internet challenges. Indeed, these networking challemgesimilar to the
conditions traditionally encountered in classical machine learning problems.

First, the events cannot be well characterized even when exxamiplkuch an event are
available (theNaturg. Second, the correlations and trends between events are hidden within
large amounts of data that are associated to these eventRdldugonship. Third, the
conditions Environmeny are changing over time. This is particularly the case fordhting
environment but also the variability of traffic demands, expectaaoisbehaviors. Fourth,

the amount of available data is too large for handling by human intemmgthe Quantity).
Finally, new events are constantly detected/discoveredE{tbkition).

From this analogy, the main concept we develop is to extend exifingetworking
equipment, i.e. routers, with a machine learning engine (as shown i6.Ejgand refer to
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them as cognitive routers. Based on advances in machine learctingyjtees including semi-
supervision, on-line, and distribution, tMachine Learning Engin@VLE) derives a number
of observations from the data collected from the routing and/or fomgareingines and
possibly from otheM_Es. By processing these observations,NhE learns rules resulting in
local decisions (directed towards the local forwarding and ro@ngines). These decisions
can also be distributed to othdrEs in case dissemination of the decision(s) beyond the local
router is required. The distribution of the processing as welieatearned rules may depend
on the peering relationship between cognitive routers. In particulabotiredary defined by
autonomous systems may be a limiting factor to the distribution ofistarmation. Hence,
cognitive routers may be operated in one domain independently of the depldgustnn
adjacent autonomous systems without modifying their peering relationship.

Router with Machine
Learning Engine

: ; ; : Control
. Learned rdles :i Machine Learningyes : R
Current router design and decisipns Engine M 1
Control : | dec1510ns§
Routing irffo Routing Rquting info Routing fnfo Routing
< Engine @ 3 g ) H Engine @ : g
A : A §
v = 1 y v §
Pacllet Pdcket Packet M Jerfeeereeenreianneianeneees B
< Forwarding < > < » | Forwarding < >
< Engine ¢ > < > Engine B >
< Fwd < — Fwd
Monitoring
""""""""""""""""" engine T

Figure 5.1 ECODE System Architecture Overview

5.2.2. Data structures

As depicted in the left-hand side of Fig.5.1, a standard router cospifieevarding engine

(as part of its forwarding plane) andrauting engine(as part of its control plane). The
forwarding engine includes a packet processor aRorevarding Information Bas€FI B).

The routing engine includes a routing information processorRanding Information Base

(RI B). As depicted in Fig. 5.1, thel B stores the routes and (in some cases) the metrics
associated with those routes to particular network destinatioixgsefThis information
contains the topology of the network immediately around the routerTBes used to find

the proper interface to which the input interface should send a padbettransmitted by the
router. TheFl B is constructed based on tReB and according to policies defined by the
operator. It is optimized for fast lookup of destination addresses.

The ECODE architecture introduces in addition to the forwarding reuthg engines (see
right-hand side of Fig.5.1):

« TheMachine Learning EnginéVLE), part of the control plane, aims at processing by
means of learning methods, the input from the network (obtained viarfting and
control components) to subsequently decide on forwarding and routing exedute
M_E provides the means to propagate the corresponding decisions to thg endi
forwarding engines.
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The MLE comprises four different functional components: thenslator the
RepresentatiortheProcessingand theDistribution (see Section 5.2.4).

As part of theVLE, the following data structures are introduced:

o The Knowledge Information BasKl B): stores learned models and (past)
decisions. Both constitute the so-called prior knowledge.

o The Observation Information Bas€O B) stores bounded sequences of
observations that can be accessed by means &etjster(R ) or loaded (on-
demand) by th€rocessor

o Thelearning Method¢LM base: stores the learning algorithms

« The Monitoring Engine(ME): part of the forwarding plane, it comprises a set of
monitoring points that can be either passive of active. When padséva)dnitoring
point aims at capturing packets (for passive measures), and wkea, at can
additionally injects probes (for active measures). Once captureketpdata may be
classified per source-destination pair, per destination prefixygi#ictclass, etc. and
metered to measure the bandwidth, delay, packet loss, etc. dfiethssiffic streams.
Alternatively, captured data may be selected (filtered orpkaih before being
classified. TheME parameters such as the sampling parameters (e.g. sampdéjg rat
and filtering parameters are controlled by khe= by means of th&E controller. The
functional description of the ME is further detailed in Section B&sulting data is
buffered the monitoring data register part of the reporting module (see also Fig.5.2).

Machine Learning Engine Control plane :

.
B:

— Routing engine — 1

CR I____& Processing I o)
I i

Translator

®

[ ]
Representation

[ ]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Forwarding Engine

. [}
MP = Monitoring points CF | | E . _
; I -- rocessing
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(Optional) pre-processing | ‘

Monitoring Engine

Forwarding plane

Figure 5.2 Data Structures and Interfaces between Forwatidmging/Monitoring and Machine
Learning Engine
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5.2.3. Interfaces

The interaction between the various engines is performed through dddit@tdaces. We
consider four distinct interfaces (see Fig.5.2):
1. RF (for Routing — Forwarding): through this interface, the routing and folinwg
engines can communicate with each other and exchange information if requires.
2. CR (for Cognitive — Routing): through this interface, ieE may retrieve data from
the routing engine and communicate to the routing engine the decision it takes.
3. CF (for Cognitive — Forwarding): similarly to tHeéR, theM_E may retrieve data from
the forwarding engine and communicate to the forwarding engine the decision it takes.
4. CM (for Cognitive - Monitoring): through this interface, tMeE may retrieve path
performance information from theE.

Monitoring, routing, and/or forwarding engines provide raw and/or pre-procdasgdo the
Machine Learning EngineM_E) through theCM CR, and CF interface, respectively. The
reason for optional pre-processing is to prevent potevitigl processing overloading. Based
on this data and machine learning methods as well as prior knowledyas learned rules
and/or decisions, thelLE takes decisions and sends them back to the routing, forwarding, and
monitoring engines. Note that the learned methods are stored in aulparsicucture called

the Learning MethodsL(M base. The so-called prior knowledge and learned models are
stored in theKnowledge Information Basgl B) used, in the ECODE architecture, to store
prior knowledge such as learned models or decisions.Obigervation Information Base

(O B) stores bounded sequences of observations that can be accessedngyointee
Register(R.) or loaded (on-demand) by the Processing.

Fig. 5.2 provides a representation of the interface between forwarding and routing engines and
the Translator function of theLE. The CMinterface is here depicted for a single line card
comprising a set of N interfaces/ports, n of thenx (N) being equipped with Blonitoring

Point (MP). Thus, a node may comprise multiple instances oCMmterface.

5.2.4. Machine Learning Engine Components

Fig. 5.2 provides a view of the elements composing the Machine LearningeENQE). As
illustrated, theVLLE comprises four different functional (sub-)components:Titaanslator, the
RepresentationtheProcessingand theDistribution.

* The Translator comprises a syntax function that converts the data received from the
Monitoring, Routing, and/or Forwarding engines into uniformly formatted data.

 The Representationtakes the formatted data (received from the Translatod) a
transforms it into various tagged observations describing statess,evenbnditions.
A "tag" can for instance include the "originating plane”, the "typfofrmation”, the
"time stamp/interval”, etc. In other words, the Representationifumptovides inputs
to the machine learning algorithms. A "tag" is assigned to tbéservations to
selectively call adequate their processing by the processor. Indedthfe training
data set, the processor selects inductively a learning algorithaarive the target
function. In other words, the representation function acts as presporcéhat
provides the actual input to the machine learning processing. The isdsqrevent
overloading the processor with the large amount data that iveddeom the routing,
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forwarding, and monitoring engines (even if the latter is making useroplsg,
filtering, etc).

» TheProcessorincludes the Learner and the Performer (functions) and the dssbocia
registers. The Learner makes use of observations for trgpampgpses and produces a
learned hypothesis h defined as the approximation of the target furepi@senting
the prediction rule to be learned. The Performer uses unseen otiossrvand
determines if the hypothesis h is a good learned approximation of aftarggbn and
the complexity c(h). Taking into account the trade-off between undeditozerfit,
once the learned hypothesis is sufficiently accurate over thedts set (test error),
the learned rules can then be used to produce decisions. Decisiotekeareby
applying the learned rules to new incoming observations by combining th@eibt
decision with previously reached decisions as well as objectivesti¢ioalc and
performance) and constraints (both technical and non-technical).

» Decisions and learned rules are then provided t®ibigibution component that aims
at disseminating them. This dissemination might be local (i.edartsie router) or
external (i.e., between various routers). If the disseminatitotad, the decisions are
sent to the Translator so that they are correctly formattedhéorauting, forwarding,
or monitoring engines. The Translator is also in charge of sendindotimstted
output to the routing, forwarding, monitoring engines through the dedicatefhoate
(CR, CF, or CM. Learned rules are locally stored in feB. On the other hand, if the
dissemination is external, the decisions and learned rule®aréosothers Machine
Learning Engines through the CC interface, as detailed in Section hd.ilpatrated
in Fig.5.6.

5.3. Monitoring Engine

The Monitoring Engine(IVE) comprises set of monitoring points and an (optional) monitoring
data pre-processor. Monitoring pointdPj can be either i) passive (passMe) or ii) active
(activeMP).

The ME could have been complemented with an (external) common monitoring atfonrm
base. The advantage of the proposed architecture is to benefé Smgle interface with the
M_E. On the other hand, adding a monitoring information base requires an rzalddaia

structure and associated processing as well as increasedelthe before reaching the
Translator. Thus, this option does not seem viable in the context ofoppespd architecture.
A good compromise consists in distributing pre-processing (per 8% on this case, delays
would be reduced (no intermediate storage outside oMtt§ and load on the translator
would still be lowered (compared to the situation where all mongodata reach the
translator). The reporting block (depicted in Fig. 5.3) would compghisemonitoring data
buffer.

5.3.1. Passive Monitoring Points

Passive monitoring points (passiwP) provide the following functions (see Fig.5.3):
capturing, selection, classification, metering, and reporting. Thetiselégnction may either
perform sampling or filtering of the captured packets. The captunnly the selection
functions are driven by a controller that is in charge of receivingl¢kesions from thé/LE
and transpose them into configurations parameters, e.g., sampling rate and fisttengsp
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5.3.2. Active Monitoring Points

Active monitoring points (activé/P) are designed as Passive monitoring points with the
addition of a prober. The prober injects probes on the "wire" (insedfidgimonitoring"
packets). The controller commands the setting of the prober parameters.

To Forwarding From Machine To Machine
engine Learning Engine Learning Engine
CM CcM
e decisions Reporting
T

— Observation point
r o]

Selection: filtering - sampling

Figure 5.3 Monitoring Point (MP) - Functional architecture

5.4. Network Architecture

Fig. 5.4 outlines a generic architecture of the network so asntlyrobserved in the Internet
topology:Tier structure

11er 3 ISP tdge/Border Houter lier 1-2 ISF

/' ; 2

Access Houter

Internal/Core Houter

Figure 5.4 General architecture of the network

The network is divided intdier ISP:

» Tier 11ISPs refer to backbone providers. There are a dozen of large imeahaind
large national ISPs interconnected by multiple private peering p@iets shared
cost). The Tier 1 ISPs provide transit service (i.e., no “upstr@gaavider). Examples
of Tier 1 ISPs are AT&T, Verizon, Sprint, or Level 3.

» Tier 2ISPs are regional or national ISPs. They are typically customBer 1 ISPs
(at least one, but often two) and provider of Tier 3 ISPs. They Heareds cost links
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with other Tier 2 ISPs. Examples of Tiers 2 ISPs are Frarelecom, British
Telecom, or Belgacom.

» Tier 31SPs refers to stub ASes. They are smaller ISPs, corpueat®rks, or even
content providers. They are only customer of Tier 1 and Ti&P2.l They possibly
have shared cost links with other Tier 3 ISPs

5.4.1. Location

Fig. 5.4 also illustrates the different types of routé&rscess Edge (or Border andInternal
(or Core) routers. Access and Edge routers are located at the border of an,|BR @, and
Rs on Fig. 5.4), while Internal routers are located within the (RPR;, and R on Fig. 5.4).
Only Access and Edge routers send/receive information from otHes. I8s already
mentioned in Section 5.2., any standard router comprises a forwardingrantihg engine.
Any of the three routers types being access, edge or internalsroatebe equipped with a
MLE as discussed in Section 5.2.

5.4.2. Information Exchange and Distribution

This sub-section describes how cognitive routers might cooperateadthother in order to
exchange information. Some use cases might take benefit and thehs require exchange
between cognitive routers. Distributed traffic anomaly dedacis by definition relying on
distributed input exchange between detecting routers within the saimegrdomain whereas
profile-based accountability can be executed on a single aometss or take benefit of
collaboration among a set of access routers belonging to the same domain.

Houting domain

Figure 5.5 Communication channels

Fig. 5.5 represents the different communication channels that caeabeed between
cognitive routers (orange lines between blue hexagons). The topology afrtimeunication
channels can be either congruent (e.g., betwgem&R) or non-congruent (between Bnd

Rs, or between Rand R) with the routing topology as depicted by the gray solid lines. Note

also that the logical topology between cognitive routers does not needatéubanesh as
represented in Fig. 5.5. Also, communication channels between cogaiiteesrdo not need
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to be permanent, i.e., they may be setup on demand depending on the distobukien

functionality.

As depicted in Fig. 5.6, exchanges between routers equipped Wtk are performed by
means of a dedicatéd interface that is functionally subdivided into:
1. CC: this sub- interface defined between representation modules rrigpeegnitive
routers is used to exchange input to the machine learning processing.

2. CGC,: this sub-interface between processing modules of peering eegnatiters is

used to exchange during machine learning execution is used to exchamge dur

processing (for e.g., co-training purposes).
3. CCy: this sub-interface between distribution modules of peering cegmitiuters is
used to exchange learned rules and decisions.

As stated before, the distribution of the processing as well dedheed rules and decisions

but also input to the machine learning processing may depend on thegpesaitionship
between cognitive routers. In particular, the boundary defined by ASma limiting factor
to the distribution of such information that is strongly dependent ompekeng or client-
server relationship between ASes.
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Figure 5.6 Exchange between routers equipped with a Madb#aening Engine (MLE)
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6. Security and Monitoring

6.1. Adaptive Traffic Sampling

6.1.1. Use Case Description

Our goal is to develop an autonomous system for network monitoring affit tr
management. Starting from a measurement task like for exampdaltgation of the traffic
matrix, the estimation of flow sizes and rates, the predictidlow rate increase/decrease, or
the detection of anomalies, the system will configure the samialteg in network routers so
as to optimize the accuracy while limiting the overhead (volumepltécted traffic, packet
processing and memory access in routers). The system will incladeles to sample the
network, collect the sampled data, analyze it, find the optimal sagn@ies, and configure
routers accordingly.

Using the inferred information on traffic statistics, we willsdm algorithms for flow
management (e.g., flow scheduling, flow blocking) inside routers thatovepuser and
network performances.

6.1.1.1. System's Input Information

At first, the system uses no entry data except measurenamisdcout by routers, but we
may envisage the exchange of information among routers to boost the caneefgethe
best measurement model and optimal router configuration. The meastsdmbe collected
are for now of the type sampled packet traces and Netflow recombsed with routing and
network topology information (e.g., routes followed by flows inside the n&wdhe results
of sampling, either at the packet level or the flow level, witvseas an input to traffic
management.

6.1.1.2. System's Output Information

In a distributed approach, each node must provide the other nodesaffithmheasurements
and information on its routing tables. The nature of exchanged data depehdsnatmtork-
wide measurement task to be carried on. In a centralized appmoagbs send their
measurements to a collector, where they are analyzed. Thet@otkkes the decisions about
which routers have to be involved in the monitoring and the amount of invatlgioebe
controlled by the sampling rate and the way sampling is done).

For example, if we want to determine the greediest users inea gietwork, the collector
starts from a configuration of monitors embedded in routers (e.g., a &#dperforming
measurements or a Netflow tool), gathers sampled data from rtiwstors, and depending
on these collected data, may increase the sampling rate on sdmeop#tte network and
decrease it on others. The objective is always to improve agcwhie limiting the
overhead.

6.1.1.3. Interactions between the Decision Enginedahe Forwarding/Routing
Engines

Our aim is to build a standalone system that infers the stathe oktwork and realizes some
monitoring application like for example anomaly detection, flow charatics estimation
and flow management. Routing optimization is not the target but raherafge routing /
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forwarding information during the network state learning phase anithdoconfiguration of
monitors and flow management controllers.

Note that the decision engine could be either centralized or dalcasdr both situations are
possible. In the centralized case, a collector must be deployealléot information from

network monitors deployed in routers. The collector uses thenntfimsmation to infer the

status of the network using machine learning techniques and to a@ptih@zmonitoring

process.

In the distributed case, network nodes exchange information among thesnteleach the
optimal router configuration (from monitoring and flow management perspsgtwith or
without the help of a central unit.

6.1.2. Interaction with Learning Module

6.1.2.1. Machine Learning Technique(s)

The system will sample the network, collect the sampled dasdyzanit, find the optimal
sampling rates, and configure routers accordingly for both monitorindf@amdnanagement
purposes.

During this procedure we use unsupervised machine learning technicgstsriate network
and traffic state (e.g., flow size and rate estimations). Thesfadl be on techniques like the
maximum likelihood, the Kalman filtering, and the EM (Expectatiorxikézation) method.
The estimated state of the network and of its traffic wilhtbe used to optimize the sampling
rates in network routers so as to increase the measuremenacgcerile limiting the
overhead (e.g., volume of collected traffic, packet processing and memmggsainside
routers).

Moreover, to take optimal decisions for the purpose of traffic manege (e.g., flow

scheduling), one needs to combine flow properties’ estimation and contrgerform the

joint estimation and control online, one can use reinforcement lea@whgiques such as
Markov Decision Processes, Markov Decision Processes withalP@tiservations and
Gittins index.

Note that it is important for our system to have an understandaiidie! that explains the
nature of the monitoring application to be run and the assumptions on theyimgdeetwork
(topology, routing, etc). The procedure of learning network status and tmeizapibn of
both monitoring and traffic management depend strongly on the natureaygheation and
the model assumptions.

6.1.2.2. The Learning Stage

The learning stage will take place where the decision functiedshéo be adapted
dynamically to change in the system. We want our system to adapt teeangnonitoring
application and to any change in network conditions. The system operatds itexations
and during each iteration, there is a collection of sampled infamm&tom the network (raw
packet traces or NetFlow records), the application of machineingaechnigues to estimate
network and traffic state, and the optimization of the monitoringigoration. Jointly, we
keep evaluating the accuracy of the estimation, and when it is jugpegtable, network
management decisions could be safely taken.
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6.1.2.3. Inputs Variables to the Machine Learningddule

Our problem is unsupervised. However, we use as input parametersiotstriahe volume
of sampled data and on the capacity of routers to perform monitorqigupper limit on the
sampling rate).

Then and during the execution of the machine learning procedure, valdisenal inputs
like the previous estimation of network and traffic states anadah@sponding monitoring
and control configuration. These additional inputs will serve to fibéteer configuration of
monitors and controllers (e.g., better sampling rate, better handlidglayf and jitter). The
new configuration will be used to carry out new measurements, wihiicheaused to find a
better estimation of network traffic state, and so on.

Note also that the inputs of the machine learning module arevéingang. Indeed, our system
uses sampled information on network traffic and network topology and rootiogtitmally
tune routers. This information is variable by nature due to nktevad traffic dynamics, and
so the system will adapt by continuously collecting data and changgngionitoring and
flow management configuration. Note that the change in the configuramrame from
modifying the monitoring application to realize, the targeted accuracgy#tem parameters
and capacity, or a change in the routing.

6.1.2.4. Outputs of the Prediction Stage

The machine learning module in our system is intended to providdiaratsn of network
and traffic status. This estimation is afterwards used to fimetter configuration of monitors
and controllers that reduces measurement errors and improvernhgengnt of flows inside
routers. For instance, our system can optimize the monitoring to catrthe following
measurements:

* The number of packets sent by a given AS (autonomous system).

* The greediest users.

* The number of packets per flow.

» Detection of anomalies.

6.1.2.5. Learning Phase Speed

The duration of the learning phase is a compromise between adaptatietavork dynamics,
overhead and accuracy. The longer we collect sampled data to leanortdehe accuracy
and the better the decisions we take, but this requires that teensgses not change or at
least that our model for the system tracks well its varighiDne can boost the learning by
collecting more samples; however this will incur more overhead. Tinedeoffs are to be
carefully studied and analyzed. They strongly depend on the monitoring andemmamd
application and the characteristics of the sampled population.

6.1.2.6. Description of Training Samples

The process of learning is unsupervised. So, at first the systemaisasry data (no training
phase). The system proceeds in iterations to converge and at thdis@nio react to any
change in network conditions. At each iteration, we sample theorletand we gather
sampled data from monitors deployed in network nodes. Depending on thlested data

we estimate network status, and we configure monitors so as to zptieturacy and limit
resources utilization. Consider the example of finding the greadsess. As a first step, the
system uses the same sampling rate in all monitors, and thendimadtibn is collected and
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analyzed to determine estimates on the traffic of the grstedkers. Suppose that these users
take the edges [R,] and [RRg], as illustrated on Fig. 6.1.

P
Figure 6.1 Testbed

In a second step, the system increases the sampling rate irs feuéard R to increase the
accuracy of the flow size estimation of the greediest usets vaducing the sampling rate in
the other monitors to reduce resource utilization. The optimizationciake into account
the error introduced by the sampling and the routes taken by flows thsidetwork (there

might be the possibility to monitor a flow at different routers).

P

Em

Figure 6.2 Testbed

Note that one can choose to reduce the sampling rate at the otmérrsinstead of putting
them OFF to keep getting an idea on the traffic in the othé& phthe network. This way the
system can detect any changes in network status such as the emergence of a newegreedy us
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6.2. Global/Active Monitoring

6.2.1. Use Case Description

Having measurements or an accurate estimation of performancesvankniénks or on end-

to-end paths is of high interest for many functions in networking as sidmisontrol, load

balancing, (Qo0S-) routing, congestion control, etc. This research ardsedé@snvestigated
for more than a decade and lead to two different approachese aati passive monitoring
techniques.

6.2.1.1. Passive and active measurements capaslgind issues

Passive monitoring tools are certainly the most appropriate tmotki§ purpose because of
their higher accuracy (active measurement tools most of theynme estimate performance
parameter values based on effectively measured ones). But riheytaalways available
when users need such information. Even carriers or ISPs who managammaelomain or
autonomous system and can access any information they need about theitvoavk siate,
can miss similar information from other carriers or ISP péet® they are connected to. As a
consequence, tools for estimating performance parameters suchyasadailable bandwidth
or loss rate on an end-to-end path, are usually based on active mesduestmiques, which
are said to be user oriented, as opposed to passive measuremettsaretdarrier or ISP
oriented. Active measurement tools can provide a solution for havingsgiraeeess to such
network feature estimations, and this can be used for any networtustraad technology.
Many tools for estimating available bandwidth have appeared imettent years such as
Abing, Spruce, Pathload, IGI-PTR, Pathchirp, etc. Ping or Traceavatguite famous and
popular tools for estimating end-to-end delay and loss rate [57, 58, 59].bBseld on active
measurements of the available bandwidth, for example, only alldimages of this
parameter, while passive monitoring tools can measure it inyaageurate way. Despite this
limitation, and because of their wider availability, active rntammg techniques for measuring
end-to-end path performances are of high interest either for mgasaime delay related
parameters, either for doing measurements on an end to end basis, even on several ASes

It is however important to remember that active measurencemsist in generating probe
traffic in the network, and then observing the impact of network compoaedtsrotocols on
traffic: loss rate, delays, RTT, etc. Therefore, as actigasurement tools generate traffic in
the network, one of their major drawbacks is related to the distoebintroduced by the
probe traffic, which can make the network QoS change, and thus provide erroressuses.
Sometimes, active probing traffic can be interpreted as defns&rvice attacks, scanning, etc.
Probe traffic is then discarded, and its source can be blacklisteciveness of probe traffic
is a side effect that active measurement tools must takeagtount. Many studies address
this probe traffic intrusiveness issue, by trying to minimize thebauraf sent packets as well
as their impact on network QoS. In addition, if an active measmetool generates only a
few packets, it would certainly provide estimation results in & slport time, which is an
important performance parameter in the Internet, whose traffieny versatile. These two
issues, together with the accuracy of estimates for non-direwlysurable performance
parameters, are the challenging limitations to overcome.

6.2.1.2. Global Monitoring System Components

Global monitoring aims at providing an accurate view on the networkrpeahce levels on
all links. It relies on both passive and active monitoring tools, lsotakeporting mechanism
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for broadcasting the measurements results, and possibly their analyslsere they are
required. The global monitoring system relies on local measuremerts PuiP). All MPs are
defined in order to integrate several traffic capturing ovaatieasurement tools. They also
integrate all needed ECODE modules. Last, they integrate irepocapabilities for
exchanging traffic traces, measurement time series or anadgsiis for online distributed
decision making. The basic functional components of the monitoring and em®asur
system are depicted on figure below.

Admin System

4—p Adminisiration

4—p Information reporting

‘ Probe

| l Admin

PrObe l Traﬁc/ZMeasu ents
Processin:
Reporting 9
el Anomaly Clasgficabion
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IPsumdump | DAGConvert | |

Reporting

Capture
|DAG libpcap | ...

Iping[ tracerouts ] Spruce I . ]

Figure 6.3 Basic functional architecture of the global moriitg system

Note that the functional architecture is quite generic and openantintegrate many
capturing, measurement, and conversion tools, as well as the ECQdiem to be
integrating as part of the traffic and measurement processing part.

6.2.1.2.1. Local Passive Monitoring

Local passive monitoring uses a hardware or software tool pdurwag traffic. The resulting
trace can be a flow or packet trace. In our case, we moreispkgitonsider a packet trace,
i.e., provides a trace of each packet (or at least its IP afdhE@ders) together with an
accurate timestamp. It can also be sampled for limiting theuat of resulting data. The
generic format of such packet trace exchange between the passieimgpm@and traffic and
measurement processing modules is depicted on figure below.

Timestamp (64 bits) ‘ IP header TCP header

Figure 6.4 Packet Trace Format
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6.2.1.2.2. Active Monitoring

Active monitoring uses a hardware or software tool to send packe¢pan the network.
These packet probes are supposed to get an echo or to be followed om &s @atommon
flow for all MPs. RTT, end-to-end delays, hop-by-hop delays and PLR aneutedion the

basis of observation on sent, observed and received packets. UDRPT@RPCMP packets
can be used. Time stamping is a significant issue when we easunng delays which
require considering timestamps provided by different clocks on differeathines.

Technically, the most accurate solution for having well synchrdnitecks is to use GPS
antenna and the PPS (Pulse Per Second) signals coming frorfetkaae atomic clocks. As
for passive monitoring, the global monitoring system is able to handleakeifégrent active

monitoring tools which can provide the necessary information for ECODE modules.

6.2.1.2.3. Distributed Decision in Active Monitayin

The active measurement of metrics is impacted by the topologheoAE from which
measurements are performed. Indeed, the closer from the thegetore accurate the results.
We are also more exposed to the possibility of having asymmetniesr and network
changing conditions. Then, depending on the target machine to probe, it istintet@ select
the best probe source inside our AS. We can imagine that #wtieelof such a source probe
machine could be a decentralized decision among all the nodes AStHeor applying the
related graph theory algorithm, we don't really think that machirmailega procedures would
be required as we are supposed to know the topology of the AS we are managing.

6.2.1.2.4. Reporting Protocol

In general, monitoring tools based on passive measurement techniquesnamd) on
dedicated routers or any other kind of device in the network are @hlnto obtain
information from a given local point of view. The problem then consistbtaining a global
view of the traffic and the network state. How to advertise dloal Imeasurements in the
whole network then becomes a question of first importance. Sincer,sthéanumber of
studies realized in this specific research area is kimife&vo generic approaches can be used
for obtaining reports from local measurement and monitoring tools:

The polling technique consists in asking periodically local measuteio@a about their last
measurements. Of course, such requests have to be issued pério@iigh this is highly
inefficient because many unnecessary queries are issued.

The reactive monitoring is the opposite approach compared to pollocandists for the local
measurement tools to send an advertisement when a change ocairsarnTbe seen as an
event driven approach.

The problem with these two approaches is that they generate excessive extraheifused
in large networks (and this is especially true for the pollingprtiegie). In a large-scale
network, a global monitoring system should be lightweight, scalable anghéastreal-time),
l.e., advertising up-to-date information. Nowadays, most proposals rely onedloéve
monitoring approach. Looking at the literature, it also appears that messarch now
addresses the scalability issue. Nevertheless, it does maitlepthe reactivity level of the
reporting system. All improvements of scalability are made aexipense of reactivity. The
resulting reporting systems that introduces several seconds of delsebdhe detection of
an event and reporting are not fast enough for solving network issues asticongentrol or
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intrusion detection. At the opposite, some systems propose a reacinr®ring approach
that considers the reactivity level at the expenses of an secofdhe advertisement/reporting
traffic. To our knowledge, no work has been done to achieve both reactivecaladble
monitoring in real time. These are two challenging issues to be solved.

For this purpose, there will be a subscribe/unsubscribe procedureshevi®s. If one MP

needs the information provided by a second one, then the firsswhificribe to the second
(similarly as the association between BGP routers) and théngetilthe information he

requests to the MP.

6.2.2. Interaction with Learning Module

No learning stage or module could be of profit to the global monitoringraysiowever, the
global monitoring system, thanks to its capability of providing path perfoenanc
measurements, is a key component for the routing system which $eledt the best path for
forwarding packets.

The global monitoring module can be considered in Fig. 5.3, as a part Bbtvarding
Engine. In fact, this module will be able to gather raw data fterown hardware but also
from other MPs through the distributed reporting system.

6.3. Anomalies Detection

Network traffic anomalies can seriously impact or disrupt the normal toged networks. It

is then vital that network administrators quickly do their iderdtfan and mitigation. A
specific type, volume anomalies, is responsible for unusual madfisaon network traffic
volume characteristics (identified by the # of packets, # of bytésobmew flows) or on its
distribution (identified by its application share or its dmition in address or geographical
space). These anomalies can be caused by a myriad of events: frooalpbysechnical
network problems (e.g., outages, routers misconfiguration), to intentionahcions
behavior (e.g., denial-of-service attacks, worms related traficabrupt changes caused by
legitimate traffic (e.g., flash crowds, alpha flows).

Anomalies created by denial-of-service attacks are partigularportant because these
attacks are extremely common and disruptive to normal traffazacteristics. Even low
intensity flooding DoS attacks directly impact the LRD (Long Range Dependencejvofket
traffic; hence, causing a degradation of the network's QoS [60, 61, 62].

Anomaly detection is achieved by comparing a set of traffic featwith a prediction
following a normal behavior model. The main issues in anomaly detectioatworks are
three folds:

* Issues relative to feature observatiod#ferent anomalies need different features to
be observed. Frequently the observation points are distributed ovegtiterk. This
raises the issue of how to extract features from these disttilmeasurements and to
use them for consistent anomaly detection in the network. An inmportde of
machine intelligence in this context is to decide which metrics dhimibbserved and
at what granularity level to enable a reliable anomaly deteand classification.
Indeed a simple solution consists to transfer all observatioeatsal point that will
thereafter decide the relevance of each observation to anomagtioket tasks.
However this solution is very costly (in term of used bandwidth) and can be
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ineffective as sometime local decisions made on more completevatisns are more
relevant that centralized decision made on aggregated one.

* Issues relative to model calibratioifhe second issue is relative to the choice of
structure of the normal behavior model. The model should be expressive eaough t
describe the complexity of the network traffic behavior and asémee being simple
to enable easy calibration. Indeed the main goal of machinerigamthe context of
anomaly detection is to calibrate this model of normal behaviormBlobehavior
model might be defined on a single observation or on a vector of oligesvdh the
latter case, the calibration might occur in a centralized (wéen all the observations
are available at a central point) or in a distributed way (wdteservation are only
available locally and the monitoring nodes in the network exchange gageue
information to generate a normal behavior model). The distributed natostvedrks
enforces us to consider the centralized and the decentralized nmaedairning
problem.

* Issues relative to detecting and recognizing anomabethird challenge is coming
from the last step of anomaly detection that consists of deciflitige ideviation
between a prediction made by the predictive normal model and thevatises is
incompatible with a normal behavior or not. This last stepfigdlit as Internet traffic
is characterized by self-similarity, (multi-)fractality arzhty range dependence [60,
61, 62, 63]. Therefore it is hard to relate large variation of obsemgato anomalies.
This makes the identification and mitigation of anomalies a very challenging task.

Despite these difficulties, constant progress has been madetworkeraffic anomaly
detection. Methods have been created to detect anomalies in akgledid network-wide
data, and techniques have been used to cope with the high dimensionalityark neiffic
data. Algorithms for network traffic anomaly detection have evolveh fonly being able to
signal an anomaly in time to providing information about the actual fkhas cause the
anomaly.

This information is very valuable to network administrators thatl heenanually verify and
mitigate potential anomalies, but is still not enough. Because chtracteristics of network
traffic and the frequency of anomalies, it's not feasible for artadministrators to manually
analyze all anomalies detected by state-of-the-art detectymmittims. Network operators
need more information than just the anomalous flows to be able tewetiffcprioritize their
time between anomalies. Automated classification of anomaligseisnext step to give
network administrators this information.

Integrating machine intelligence into the routing engine could be vemghal in this context
as it will leverage the manual task of administrators and giee thn automatic tool for
detecting and acting on the source of anomalies with a low op®ahtiost, low false alarm
rate and very high detection rates.

We will here describe four use cases that could be applied to the intelligenine that the
project is going to develop.
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6.3.1. Use Case Description

6.3.1.1. Anomaly Classification: The Required Nextep in Anomaly Detection

Although there has been some effort to characterize netwoflc teafomalies, automated
classification has not received much attention (a notable esnaptithe work by Lakhina et
al. [64]). Automated classification intends to add meaningful informatothne alert of a

detected anomaly. Besides the basic information of an anomaly'sevaluntraffic features,
an algorithm for automated classification should be able to makelewrderivations over

the anomaly's characteristics. ldeally, the computed information cateéhagsed to define the
type of the anomaly or to at least help characterize the underlying cause.

6.3.1.2. Active Monitoring Applied to Anomaly Detem

Most of previous work on attack detection has been concentrating on nmapirafific using
passive measurement techniques. This part of this use casedesigm an alternative
approach based on active measurements, the objective being to msikéetbe real-time
detection of DoS flooding attacks, without intrusive probing. It redieshe assumption that
delays will be impacted in case of attack. The advantage of angasurement is its user-
oriented nature which allows anybody to cope with DoS attack detection (whereas itlys usua
devoted to network administrators).

The end-to-end approach of active measurements also makes pdssideect attacks
anywhere in the Internet from any source. This represents a greaitage in our situation
since it allows us to potentially detect anomalies inside oth&esAwithout an actual
exchange of information with these ASes (e.g., if these ASes do haoé strategic
information). Active measurements would then significantly easdedbign of a global attack
detection system for the Internet.

Active measurements are very popular in the Internet for megsuelays, loss rates,
inferring network topologies, etc. They are also used for estighatrailable bandwidth (see
tools as Abing, Spruce, Pathload, IGI-PTR, Pathchirp, etc [57, 58, 59]). Our @dapeshod

then relies on analyzing time series distributions of measureldP If2quest/echo delays. Its
originality relies on how these time series distributions amaputed in order to exhibit
anomalous values corresponding to DoS flooding attacks and classifying Foenthis
purpose, and taking advantage of previous work on anomaly passive detection which
demonstrated the benefits of statistics or entropy analysis, ouctidetenethod also
computes the entropy from distributions of RTT time series.

However, first results when working on the entropy function or Kullbackleeitistance
only were not convincing in active measurements, because of a higbf iaise positives.
The methodology will be extended by the use of the Hausdorff distancestabudions of
time series, an index of dissimilarity (whereas entropy is aionflsimilarity) to reduce this
level of false positives. Hausdorff distance was used many timesge pattern recognition.
The combination of all these distances/indexes of similadigsimilarity allows us to reduce
the rate of false positives and false negatives. Classificabncerning active measurements
remains however an open problem. The identification of ICMP-SEQ fim®ins to be
possible but others types of anomalies still seem to be unidentifiable [65].
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The performance of the system is also a great criterion tuaggaits efficiency. This
performance can be evaluated in two terms: reactivity and progesssources used. The
way time series distributions are built/used allows us to these performance indexes. In
fact each time series distribution is built with two paramseténe size of the window and the
interval between each window or the overlapping between two conseautidews. In fact,
the greater the size of the window is, the shorter the tinveekateach window or the bigger
the overlapping are, the more accurate the system is, but ekpeese of the processing
resources used.

6.3.1.3. Two dimensions ADS (Anomaly Detection 8yst

6.3.1.3.1Single Point ADS

This first step aims at designing an Anomaly Detection Sys#DS) able to detect and
classify traffic anomalies on a single link. Because of traffidgability and the low intensity
of anomalies components, it is not easy to detect accuratelyabesjm.e. with a limited
amount of false positives and false negatives. In addition, thetremgk which relies on
strong statistical or signal processing techniques does not pravé#isfactory solution.
First, such solutions are not perfectly accurate: Even if theyfisgmily reduce the number
of false positive and false negative, they cannot guarantee thatatanks will not remain
undetected, whereas some normal variations of the traffic wij@btletected as anomalies.
Second, if an anomaly is detected in the spectral plane or baske enttopy function, it is
very difficult to then identify the anomaly characteristics to egimetwork operator
understandable information to cope with the anomaly. We then propose tatsetbe
detection and classification functions. We then recommend to desemsample as possible
detection algorithm based on several volume parameters of trdffiarstance a simple one
based on deltoids. The key contribution is then the design of a new alg@itmutomated
classification of network traffic anomalies. We plan to dertrates how the information
obtained by further analyzing the identified anomalous flows caabb#&racted as anomaly
attributes. These attributes can then be used in a signatuce-tlassification module to
reliably characterize different types of anomalies. By usingningful and well-explained
attributes, network operators can adapt the classification ket needs. We will define
several of these attributes and show how different types of amsmaiuld potentially be
characterized using them. We will show the expressiveness ofapipioach to reliably
classify different types of anomalies (e.g., DDoS, network scans,teuk aesponses) and
how it gives network operators the flexibility needed so they canneseork traffic
anomalies detection algorithms in a more efficient manner. Tdssifitation algorithm is
then also devoted to false alarms reduction, i.e. it can clabsfyraffic which leads the
simple detection algorithm to raise an alarm as normal, lauml gtopping the delivery of a
false alarm to the operator. In fact, the ultimate goal of thssification algorithm aims at
determining the intension behind any anomaly.

6.3.1.3.2Distributed Collaborative ADS

Network-wide anomaly detection methods developed up to now consisted odrtriagsa set
of metrics to a central point where these metrics wbengpared to their expected values and
divergence were detected. In these settings the operation of amlaraetector could be
divided into two related but different tasks:
* Model identification this step is essentially of machine learning nature. Irstefs a
relevant dynamical mathematical model of the normal behavioaffictis extracted

Deliverable D2.1 Page 33 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

by learning from measurements of network parameters during anomalgdeeds.
The aim of this model is to predict the behavior of the trafficeither time or
frequency domain without going precisely into the details of whatcisally
happening inside the network. This approximation results in a level epiatde error
in the precision of the model prediction. This error should be an indepenttenero
mean random variable, as any subsisting bias or dependence in diotigiresrror
would mean that some predictive elements still subsist that beuekploited. The
level of acceptable error is characterized by the model igtitn step. Different
approaches have been developed for this steleed the model identification step is
subject to a complexity/accuracy trade-afé. attaining higher accuracy could be
done at the cost of higher complexity. One should also be careful abou¢anweng
that results in the model having poor performance outside the meastingsed for
calibrating it. For this reason, as a rule of thumb the acceppabtiction error is
usually overestimated in a conservative way to enable the ussso€dmplex model
that are still able to have good performance outside their learning sets.

» Filtering: the normal behavior model developed in the first step is ughdkistep to
remove from observation what could be predicted using the previousl. nTdae
residue of this filtering is called thenhovation processand represents the part of the
observation that could not be predicted. This step is a clasiginal-processing step.
When the observed metrics are compatible with a linear Gaysiaess assumption
the optimal filter for implementing this filtering step is th€alman filter.
Nevertheless, because of its feedback structure the Kalnw@nidilhighly robust to
deviation from linearity and gaussianity. However, under more general hgjzotse
non-linearity Extended Kalman Filter (EKF) could be used and écleafiiter can
deal with highly non-Gaussian measurements. This means that whémeveodel
identification results in a good predictive model, the filteringp steecome
straightforward.

« Decision stepthe last step of an anomaly detector is the decision stepslstép, the
innovation process derived previously is compared with the level dptaide
prediction error obtained in first step through a statisticaél fasanomaly is detected
if this comparison leads to the decision that the observed innovatomesgr is
incompatible with an acceptable level of prediction errohéfmodeling and filtering
steps are done correctly one can expect to obtain at the decigicansiedependent
and Gaussian process and to have to apply a simple hypothesis testyve/ihenees to
decide if an observed value of the innovation process resulting frofilténeg step
is compatible with the hypothesis of having been generated followingven
distribution (resulting from the acceptable level of predictioorecoming from the
modeling step). Because of the inherent probable error in this hgpotiest, any
anomaly detection can be characterized by a Receiver Oper&iayacteristic Curve
(ROC curve) showing the trade-off between the risks of not-deteatingccurring
anomalyvs.the likelihood that a detected anomaly has not happened in theordl
Because of the approximations done to implement the modeling anthdil&eps
with an acceptable complexity, very frequently the decision step lbadeal with
innovation processes that are not precisely independent and GaussiasspiThis
results in ROC curves that are below the optimal ROC curves texpe&den
everything is perfectly following the theory. Nonetheless, that fime the ROC curve
that could evaluate and compare the quality of different anomaly oleteted on
different modeling, filtering and decision structures.
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Of the three above steps, the first step is essentially diinetearning nature; the two last
steps are of statistical signal processing nature.

Classically, the three above steps are done in a central poinkt vaflethe relevant

measurements are transported. Whenever the problem of ceatrahpmaly detection is a
complex enough problem, there have been a good number of researchegelimemadone

on this topic. One can divide these researches in two clgssametricandnon-parametric

The parametric approaches use a given model structure to cd@wertelation existing in
the observed measurements. This correlation is indeed used to phedfature value of
observed metrics. This is this correlation captured in the predictive modelfitiates! in the

filtering step. Maximum Likelihood estimation of Dynamical Lineasstems and Principal
Component Analysis (PCA) based modeling are noteworthy examples ahgtaca
approaches that have been applied up to now to centralized anomaly detection.

However, non-parametric approaches follow a different path. In #ygs®aches, we first
apply to the data a generic and agnostic un-correlating transfoam résults in an
uncorrelated signal that will retain the properties of theaingignal not anymore in its
correlation structure (that has been wiped out by the transfornratingr in its distribution

that could be used in the decision step. Because of the un-cagetatisform, the predictive
model now consists simply of a distribution of transformed observatiansti@ld be

inferred by machine learning; the filtering step is not anymore nemu#dhe decision step
consists of checking if a transformed observed value is compatithieavgiven distribution.

One example of un-correlating function is random linear projectioh tdies a set of
observations and maps it into a random space using a linear proj&dttorrandom

coefficient. Because of the random nature of the projection, thanksti@iclimit theorem if

the number of element used in the linear projection is large endughrahdom linear
projection results in a jointly Gaussian and independent random vectorcavitentration

around its mean values. These mean values are the distributiontize wharacteristic of
the normal behavior. Although the non-parametric approaches seemrsampleey do not
need a complex model calibration, they have specific complexityedetatthe choice of the
number of observation to mix to obtain convergence of the random projedioved as the

robust estimation of the density.

Out of these two approaches, the parametric approach have beené¢hevestigated in the
recent years, however recently the non-parametric approachesdwave@roposed and have
resulted in interesting properties.

The more challenging problem we want in particular to investigathe context of ECODE
project is how to perform anomaly detection in a distributed wayeddin a real network
source of observation are distributed and one would like to be abléetd daomalies at the
observation point rather than delegate the detection to a distardal qawint. One obvious
way consists of assuming the distributed problem as severalemdiept instances of
centralized anomaly detection apply only on data observed at this point.vétovileis
simplistic approach misses the correlation between measurewiaty that could be the only
vantage point for distributed anomalies. This means that all the #éiln@ve steps have to be
done in a decentralized way if one wants to benefit from the full correlatiotustuc
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As for centralized approaches, parametric and non-parametric apgsoean be applied to
the distributed problem. As described earlier, parametric agpeeaare heavily based on
signal processing techniques, and extending them to distributed case beocom&snce of
general distributed signal processing problems. The area of disttibiginal processing has
attracted during the past years a lot of interests. The praiolem in distributed signal
processing consists of mapping a signal-processing task over adstribited processors
that will cooperate to achieve the needed task. Some recesdirches have targeted
implementation of distributed Karhunen-Loeve transform (that is tises lwd PCA based
approaches), as well as distributed Kalman filtering. Transtettiese researches into the
context of distributed anomaly detection in networks and implemeritarg bn the ECODE
platform is one of the main goals of our research in this project.

Non-Parametric approaches can also be extended to distributed amatesdyjon. Recent
researches have shown the interest of a generic technique coonmmélti-user information
theory and named "Slepian-Wolf Coding". This technique consists of excharagidom

projections (sketches) between measurement points. These randoaotigrej@ct as side
information that are used to build an overall model enabling the lecaidn about a global
anomaly occurring in the whole network. Our aim here is to investigateelevance of this
approach to distributed anomaly detection.

6.3.2. Interaction with Learning Module

6.3.2.1. Distributed Anomaly Detection

* Learning Stage: Learning stage takes place whenever a recalibration of the Inorma

behaviour model is needed. This happen normally at the begin of theyaasiwitell
as whenever a significant change has happened in the network (for exaddflon
of a new customer that generate a high enough traffic to change ite)poof
whenever a significant divergence is observed between actual ndtebakior an
previous model.

* Machine learning technique:We expect to use parametric as well as non-parametric
techniques during the project. Parametric methods need an unsupervised model

calibration phase that can use several techniques as the EM tdfxmpec
Maximization) or the MCMC (Monte Carlo Markov Chain) to estimatenaximum
likelihood estimate of model parameters. Another approach is theuken-Loeve
transform (or its discrete counterpart the PCA). The filteghgse will use mainly
Kalman filtering techniques. Decision phase is not of machimaiteanature. Non-
parametric techniques are mainly density estimation approachesaadem mosaic.
The decision phase uses statistical tests based on Kullback-Leibneralistan

* Inputs variables to the machine learning module:In the case of the distributed
anomaly detection system, we consider that the inputs variablése tonachine
learning module consist on the local observations and the random iprogemming
from other nodes. Indeed, these inputs consist of histograms obtainechiodem
projection of observation in other nodes. These inputs are finitehlemgtors of
integers. Note also that inputs are time varying. Inputs are ittifiaetseries. Time is
an essential parameter for detection and classification algorithms.

« Outputs of the prediction stage:In the most general setting we expect the system to

provide as an output the likelihood that an anomaly has been detected andlgve

information about the source of this anomaly. However we should add to this
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information forwarded to other node in order to help them to build global rbte
network (for example random projection of local observation forwarded to neighbors).
Learning phase speed:The learning phase speed depends on the parametric, non-
parametric nature of the technique used. One can expect thateparaechniques

will have a larger learning phase as they need to calibratedal. We have carefully

to evaluate this speed to ensure that an online operation is feasible.

Interaction with the routing/forwarding system: At the first stage, we are mainly
interested about anomaly detection and not about anomaly mitigation. Indeead, thi
this last step that will have to interact with the ForwarfRogiting Engine. We will

deal with this interaction in later stage.

6.3.2.2. Traffic anomalies detection

Learning Stage: There are two learning processes in the ADS: a process famigar
about anomaly signatures, and a process for learning about curréfit tra
characteristics or alarm events produced by single point ADSnibgfanomaly
signatures is a long process which requires strong analysis oalsexamples of the
same types of anomalies. As the objective is to determineuthan intension behind
an anomaly, it seems impossible to make it automatically. Therdfor definition of
the anomalies signatures will be made manually. The anomaly wigealatabase can
then be enriched anytime a new anomaly is discovered and fully anadywkd
characterized. For the single point detection algorithm based amddelt is required
to learn about a simple traffic characteristic: the standaxdation on deltoids time
series (difference between inter-arrival times of conseeytackets). This means that
the system will have to compute this statistical valueaf@iven time before being
able to detect anomalies.
Inputs variables to the machine learning module:The single point ADS uses as
input the output of a passive monitoring system which provides a fulepaeke, i.e.
a file or stream containing a trace for all packets witleadt for each packet full IP
and TCP headers. This packet trace can be at the ERF fdahaatne of the DAG
cards [66]) or any other (as the PCAP format of Wireshark feames). Conversions
between different formats should be easy. For avoiding waste oirticoaversion, it
would be better to use as inputs for the ADS the packet tracetfofnthe used
passive monitoring equipment. For the distributed collaborative ADS, irguats
coming from all other ADS involved in the collaboration. At the staigie design, it
is impossible to provide a complete description of such inputs. Anywa can
imagine that such inputs (ADS outputs) are alarms. Alarms would certainlyrcontai

o The type of anomaly detected (based on the classification process results)

0 A confidence level of the local detection and classification algorithms

o A description of the anomaly characteristics which will depends hen t

anomaly type. It would however certainly contain source and destination
addresses, source and destination ports, anomaly intensity, etc.

Note that inputs are time varying. Inputs are in fact timeeseifiime is an essential
parameter for detection and classification algorithms.
Outputs of the prediction stage:We do not intend to make any prediction for ADS.
ADS, especially the distributed collaborative version, only talleantage of the
alarms received. But a new decision can be made anytime a new alarm arrives.
Learning phase speedit has to be as fast as possible in order to make possible
detection as early as possible, as well as launching countermeasures
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Interaction with the routing/forwarding system: The ADS will report any anomaly
to the routing/forwarding system. The list of anomalies is aptaietely set yet. So, it
is impossible at this time to completely define the sealafms to be sent to the
routing/forwarding system. However, we can imagine that the sameokaddrms as
the ones described as inputs for the distributed collabordd8ecbuld be used, i.e.
including an indication about the type of anomaly and its features. Thease of
attack, the routing/forwarding system could easily drop attack-aagtnsgjtpackets. In
case of legitimate anomaly as flash crowd, it could adapt thngosirategy in order
to optimize the performance and QoS levels.

6.3.2.3. Active monitoring applied to anomaly deten

Learning Stage: We need the ML algorithm to be able to give us some reliable
threshold for each indices/distances and each parameter of tlokses/idistances.
Example: a threshold for Entropy, Kullback-Leibler distance and Hadstlethnces
[65] and the optimum values for the parameters of the distributafcslation (size

of the window and interval between each window or overlapping).

Note also that, as we need to adapt to the network conditiongatiming should be

on line.

Inputs variables to the machine learning module:The inputs are the metrics
gathered by the active measurements: real numbers (like seress, packet loss
ratio). The values of the parameters in the distances/indacealso be seen as inputs.
These parameters can be integer or real numbers. Note thigpé#seof inputs are
static but the values of the inputs are constantly changing.

Outputs of the prediction stage:We need a binary classification to know whether we
have an anomaly or not. But we also need a classification (if pes&iblthe type of
anomaly detected (port scan, network scan, DoS, DDoS).

Learning phase speedit has to be as fast as possible in order to make possible
detection as early as possible, as well as launching countermeasures

Interaction with the routing/forwarding system: The same interactions as we
described in the Traffic anomalies detection case.
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7. Routing
7.1. BGP

7.1.1. Use Case Description

7.1.1.1. Path Exploration Overview

Behavior of path vector protocolsuch as BGP is inherently associated with tipaith
dependencieghe path selected by a router depends on paths learned by its reighudr,
in turn, is influenced by the paths selected at the neighbors' peeis) an. This property of
exchanging vectors of ASes (or paths) to prevent routing loops lead® als® $o-called
path exploratior{18, 20] phenomenon that delays BGP protocol convergence [20].

As a path vector protocol, BGP exhibits thus path exploration phenomendhustrate the
path exploration phenomenon by an example and then describe why, in gen&al, it
impossible to avoid this phenomenon by solely relying on the AS_Pathsatsdogith BGP
routes. In this example, we denote an AS_Path gasAf... A1, Ag], where A is the origin

AS to whichd belongs and Athe local BGP router.

AS3

Figure 7.1 BGP and path exploration. Solid/dashed linesasgmt eBGP/iBGP sessions

Consider the topology in Fig. 7.1. Now suppose ASnounces a path to destinatehrthis
announcement is received at its neighbors and propagated hop by hop. Finallythevhen
network converges, Aknows three paths to readhi.e., [3,2,1,0], [4,2,1,0], and [7,6,1,0]
(preferred in that order).

Now consider what happens when the link betweepah8 AS fails, makingd unreachable

at AS,. This failure triggers the following sequence of events; #&hds withdrawals to AS

and AS. In turn, each of them sends withdrawal to their own neighbors. EventualyyihS
receive withdrawals from each of ASAS,;, and AS (in some order). Suppose the first one
was from AS. ASs then removes the path [3,2,1,0], selects [4,2,1,0] as the best path and
sends it to its (other) neighbors. However, if the withdrawal fA@narrives next, then this

best route is invalidated and ASelects (and announces) [7,6,1,0]. Finally, aftes AS
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receives the withdrawal from ASit invalidates the path announced earlier and sends a
withdrawal.

This cycle of selecting and propagating (invalid) paths is termédexgloration. Clearly, the
cycle stops after all the obsolete routes have been explored and invalidated

7.1.1.2 BGP Event characterization

The following parameters are possible learning parameters as they etizeaetents in BGP:
1. Temporal characteristics
* Arrival time
* Inter Arrival time (IAT)
between previous BGP update message
between previous BGP update message with spatial characteristics
2. Spatial characteristics
» AS originator
* Prefix
* AS_Path (which characterizes the type of event: longer, shorter or equal)
* Peer (BGP speaker from where the BGP update message is received)

Note the assumption is made here that a pattern detection tecloaiguee used so as to
identify path exploration occurrence. Indeed, BGP is a path-vectoocptotlocalizing
topologically where a failure happened in the network is not trimidBGP as only path-
vectors are communicated on updates learning opportunity. The objedtigeeiss thus the
detection path exploration in BGP and, if possible, accelerat@rinigss (i.e., avoiding the
exchange of useless BGP UPDATE messages between routers) 0 ediminate its
detrimental affects on BGP convergence [19]. After its detectiomuter could decide to
select directly to the actual (and correct) path thathelbdvertised to its downstream peers.
A desired side effect of this acceleration would be to reducB@&#e churn generated during
the path exploration. Compared to other damping techniques the procesoésgronly rely
on an accelerated route selection process. Other solutions have bpesedr[67, 68] but
they have the disadvantages of being very difficult to implement and toyddpke to
modifications to BGP itself.

7.1.2. Interaction with Learning Module

7.1.2.1. Input to the Machine Learning Module

The input to the machine learning module takes the form of (a segonBGP UPDATE
messages. Each BGP UPDATE message takes the form of a byte streaaiexsidgi8].

Each BGP UPDATE message contains several attributes suchedsetwork Layer
Reachability (NLRI), the Withdrawn Routesand thePath Attributes[18]. The Path
Attributes are of keen interest for us, particularly, the A#h,Rhat identifies the ordered list
of AS numbers through which routing information carried in the UPBAfessage has
passed [18].

7.1.2.2. Output of the Machine Learning Module

The output of the learned model should help in deciding whether theged®GP update
message should be forwarded to the router's neighbors or not and whitcé sipala be
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generated by the local BGP router to its own neighbors. Depending ondbdsda below)
in which the BGP message falls, the UPDATE message is propagated or not.

* If the update belongs to thexploration freeclass it can be forwarded per MRAI
(Minimum Route Advertisement Interval, the minimum timer betwsee UPDATE
messages) local setting.

» If the update belongs to tlexploration seedlass and that prefix is withdrawn:

The local BGP router should prevent selection of an "exploratioe'cp8_Path (if present).
If an "exploration cycle" is received as part of the next uptiee the router should hold its
selection. The local BGP router should prefer selection of another "exploraiih/As® Path
(if present). If none are present for that destination beforediahe M, timer for that
destination prefixd elapses, then the local BGP router shall select one of théotatpn
free" sequence.

7.1.2.3. Classifying BGP Events

A path exploration phase is characterized by a withdrawal of a towsrds a destination
prefix previously selected and installed in the Local RIB (itlee, destination prefix is
declared unfeasible) followed by the advertisement of that destinatefix with a longer
AS_Path, a different AS_Path of the same length, or with the s&@n@akh but different
attributes. To determine occurrence of such event(s), the taskstsoimsiclassifying the
AS_Path that are inducing path exploration from those that are "'s&fersuch this
classification can be easily extended so as to discover the seed sequences.

7.1.2.3.1. Binary Classification

The classification task consists in determining if a BGP UPBAnessage falls within a
path exploration phase or not.
« If the BGP UPDATE message does not fall in path exploration pliaath
exploration free), then the BGP UPDATE message is propagatedabeesn the
BGP specifications [18].
« If the BGP UPDATE message falls in path exploration phase gaoration seed),
then determine if the sequence to which the BGP UPDATE message belongs will
o Either stabilize to a newly preferred path for the same prefix
o Or not. In this case, the path exploration phase ends with no path for the
destination prefix.

Base on this classification the purpose is to accelerate @i éploration phase either by
directly determining which BGP UPDATE message to be propagated tmuker's BGP
peering neighbors (that avoids the exploration sequence) or by direatiyndeng the
absence of a stable preferred route for the destination preBpegific message indicating
the absence of a stable path for that destination prefix to the B@#stleam neighbors may
be considered.

7.1.2.3.2. Classification Based on Pivot AS

In this case, the classification criterion is based on the presence of a fivothie AS_Path.
A pivot AS is defined as an AS giving access to a critical link (which is in cas&ts a link
defining a client-server relationship between two ASes [20]). Critided can be identified
using spectral analysis (see below). In the example depicted in Fig. 7i2,a8vot AS.
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Figure 7.2 BGP Path Exploration Example

The classification task consists then in classifying AS_Pathsiggimation prefixesl as
follows:

» Class 1includes the set of AS_Paths that do not cross a pivot AS. Usrnexample
depicted in Fig. 7.2: AS_Path [1,0] belongs to that class. These AS &atexpected
to be exploration free.

* Class 2includes the set of minimum length AS_Paths that crossesA8/¢AS, and
AS;). AS_Path [2,0] belongs to that class. These AS Paths are explsagds.
Indeed, the AS_Path of Class 2 [2,0] defines a seed sequence bedausts af
withdrawal, an update sequence closely coupled in time of longer ASs@acted
from Class 3 would result in exploration phase.

* Class 3 includes the set of other AS_Paths that cross a pivot AS §A8 AS).
Using the above example: [3,2,0], and [4,3,2,0] belong to that class. ThesatAsS P
are segments part of exploration cycles. When the element undee figilremoved
from the AS topology, the concatenation of the remaining AS_Paths %ei@,2] x
[2,5]) with the AS_Path between the pivot AS and the local AS shows a cycle.

A timer defined aMq = T_Maxlength sequenceT_Min length sequence is maintained per
destination prefix. The latter sequence belongs to the exploratals stass. One timer is
maintained per exploration seed sequence.

Consider now the topology depicted at the right hand side of Fig. 7.2, arsddssume that a
link between A% and AS is added, or ASis subject to a policy change. A new set of
AS_Paths will reach Ass [4,0], [3,4,0], and [2,3,4,0]. The AS_Path [4,0] falls into Class 2,
whereas AS_Paths [3,4,0] and [2,3,4,0] falls into Class 3.

To determine critical links, we make use of spectral analysihefinter-domain routing
topology. This technique provides for metrics allowing to extract rnropbrtant global
characteristics of the topology: spectrum-related metrics prowdesds for critical graph
characteristics such as distance-related parameters, expansperties, and values related
to graph resilience estimation under node/link removal. The latter d@®vineasure of
network robustness under link removal (equals minimum balanced cut size of a graph).

We define the matriA as then x n adjacency matrix of a graph constructed by setting the

value of its element & = a; = 1 if there is a link between nodeandj. All other elements
have value 0. Scalar are the eigenvalue and vectothe eigenvector of AiAv =A v. The
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spectrum of a graph is the set of eigenvalues$ its adjacency matriA. Most networks with
high values as eigenvalues have small diameter, expand faster, amdbrareobust. The
graph’s with largest eigenvalues provide bounds on network robustnes®sy#ct to both
link and node removals.

7.1.2.4 Interaction with the Routing System

BGP UPDATE messages constitute the input to the machine leanaudgle. BGP routers
(or speakers) advertise network reachability information abouind@shs by sending to
their neighbors UPDATE messages containing set of destination adgresis
announcements (feasible routes) or withdrawals (unfeasible rdaatggther with attributes
associated to a path to these destinations.

* An announcemennforms neighboring BGP routers of a path to a given destination.
When a local BGP router propagates a route learned from the UPD¥Esage sent
by one of its peering BGP routers, it modifies the route's AS Pathuée based on
the location of the BGP router to which the UPDATE message corgdimat route
will be sent.

* A withdrawal is an update indicating that a previously advertised destinatioa is
longer reachable. Route withdrawals only contain the destination goiidiily tell
the receiver to invalidate (or remove) the route previously announced by the sender.

A BGP router receives UPDATE messages from its BGP mgpeeighbors following a time
varying interval bound by a minimum threshold. As mentioned in [18], thexemBimum
amount of time (MRAI) between two BGP UPDATE messages teadrds the same BGP
router. Thus, a given BGP router receives one BGP UPDATE messaddR#Ad time
interval per neighbor (and sometimes per destination pred)xes

The output (i.e., the class of the BGP UPDATE message) of tireriggrocess is used by
the selection process of the local BGP router. This output is swibdted to the router’s
neighbors or other nodes in the system. However, the router's ougputh@g BGP update
messages that are forwarded) will influence the routetgmeaf the BGP router's neighbor
as depicted in Fig.7.3 (the crossed circles represents selactiorg at the input and output
of the "BGP route selection” process).

| BGP UPDATE
i | classification .
_____________________ ERJ, We——CR &
Apply Policy = Apply Policy = ]
1 Input filtering Output filtering
Receive |  routes & treat routes & treat | Send
BGP | attributes attributes | BGP
Updates ; Apply Import Apply Export | Upda;tes
i Policies Loc-RIB Policies |
Best routes
A o Best Route | A5 ‘;a @
N Selection L Ad" R
: RIR- j-RIB-Out
_________ AdiRIBAn  “BoPdesson | T
process selects

Install forw:arding
entries for best routes

Forwarding Table

Figure 7.3 Interaction between the routih;cj”l]ée case ani/tehine Learning Engine

the best route
towards each dest.
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7.1.2.4 Machine Learning Process and Technique

The semi-supervised or unsupervised learning algorithm would be execuieel amil be
distributed on BGP routers. For maintenance and further developmsonhsed is important
that the learning model is understandable, possibly at the cost of an accuracy loss.

The prediction stage must be executed as fast as possible because a BGRayorgeeive a
huge quantity of BGP messages within a small time window. Consequietiprediction
shall be executed as fast as possible to prevent slowing down theB@®Bleoute selection
process.

7.2. Network Recovery and Resiliency

7.2.1. Use Case Description

Routing Engine

LS PDU Processing
LS PDU Flooding
SPF Computation
RIB Update

FIB Update

i LS PDU
ST SRR Switching ST T———

o
.............. p Forwarding —-—— Forwarding
Line card Line card

Figure 7.4 Router update process

One can model the recovery process in IP routers as a sequence of four-steps:

1. Computation of the shortest path tree based on an updated link-SSatdafbase:
taking 30 to 50 microseconds per node in the network.

2. Update of the central routing information base (RIB) based on theeshguath
computation.

3. Update of the central forwarding information base (FIB) based on the RIB.

4. Distribution of forwarding information base towards the line cataking 30-50ms
per set of updates (see Fig. 7.5).

Updates 1 Distribution 1 Updates 2 Distribution 2

L] 50 80+ ¢ 100+ d 100« 2d

Figure 7.5 Update process time

7.2.1.1. OSPF Event Modeling and Clustering

In an IGP environment, from the moment a Link State Protocol Dates (LS PDU) is
received that is newer than the current database containSRE& protocol [12] will
automatically trigger step 1 in the process as shown in Fig. 7.4. ldovi@vcertain events,
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more intelligent behavior is possible based on historical behaviaodiypes of PDUs: Hello
messages which are sent between neighbors to poll the status adijdlcency and LS
messages which together — from all routers in the network — buildvigsaon the entire

network topology by communicating the state of their links. Hello ngessare sent on a
periodic basis, typically every 10s. LS PDUs have both periodicnias®ns (typically

every 30 min, at half MaxAge time, parameter fixed at 60min), angetrggl transmissions
upon a network topology event (failure, new link/node, etc.).

Failure detection between OSPF routers can be based either 6nH28& PDUs or on a

faster Hello protocol such as Bidirectional Forwarding Detec{®RD [42]), where the

periodicity is in the order of tens or hundreds of milliseconds. Thghber adjacency

between two OSPF routers typically is declared down from the motherimer reaches
RouterDeadInterval, which is typically a multiplier (e.g., three)khsf HelloInterval itself

(BFD reacts similarly). However, using the RouterDeadIntee@nique does not take into
account the historical behavior of sent and received Hello PDUs.nféasis that it is not
improbable that failure detection can happen earlier by severas@fderagnitude compared
to the usual periodicity.

A possible policy using a probability model for Hello PDUs arriwadet can for example
assume a failure from the moment the modeled chance that @ P@U will still arrive
becomes too small (see Figure 7.6). Modeling will become morieutifbecause of the
randomization factor by which the periodicity at the sender will headelay of 0-15%,
meaning that a message will be send in a time frame varying If% earlier then the
average value till 15% later. Techniques will need to oveecthis by taking additional input
into account such as the probability of the sequence of severahgess the correlation
between Link State PDUs in multi-access segments, etc. Inawadss (MA) networks, for
example Ethernet networks, Hello adjacencies are only held betameelected Designated
Router (DR) and other routers connected to the MA network. Bet¢hasenderlying MA
network topology is unknown (being a layer 2, while IP is network layee&,the possible
topologies in the cloud in Fig. 7.6), routers do not know beforehand which acipcare
correlated. Learning these correlations can help routers to desige én how to reroute, and
what traffic to reroute earlier. For example, if a failimtjggency between the DR and node A
always seems to imply a failure between the DR and node B, onendbbave to assume
that node B is reachable via the MA network.

Sequences of LS PDUs can be correlated in different ways,xonpge: node failures
resulting into related LS Updates for the adjacent links, SHRigd Group (SRG) failures
resulting into related LS Updates of links being contained in the groudAometwork
failures resulting into correlated LS Updates of DR adjacenthat failed. Figure 7.6
illustrates that if the node in between node a, b, ¢ and d failalttat these nodes will flood
their LS Updates over the network. This means that all rowtersving these LS Update
messages will recalculate all routes (step 1) on every epdaking into account the
announced link failure. However more efficient procedures are pos&bial et al. make
use of hold-off timers to wait for routing database update uriilsure that no node failure
has occurred [43], but this has the following issues i) what isdeéed hold-off interval, and
i) how will you synchronize different router databases.

Deliverable D2.1 Page 45 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

prob

Correlation

1.
sl
0 ¥ -."": —T

A B CDE

Figure 7.6 Modeling and Correlating Hello PDU Arrival Time

Instead of waiting on possible next LS Updates, another option could bediotghe type of

failure based on the sequence of received LS Updates. This cansbetiéld for example,
using Fig. 7.7. Let us assume that as a result of a failure, nceiga®g LS Updates from A
and B. These LS Updates indicate that A and B have lost conhettithe node in between
A, B, C and D. Node E could make the prediction, based on historical beliaaiat is more

probable that the node X located in between nodes A, B, C and D faiteer than only the
link from node A towards X and/or the link of node B towards X. Thesdifice with Goyal

et al.'s solution of [43] is that the switch-over happens as soomssible, and that no
arbitrary waiting time is involved to expectedly reach synchronizedrteakecision. There is
a chance that the wrong prediction is made resulting in a penaltyeonetwork routing.

However, as the prediction will act as a worst-case predi¢tiode failure or not), no
additional packet loss can be caused by this prediction. Singtdmigues should be
developed in order to detect the simultaneous failure of links belonging to SRGs.

Figure 7.7 Correlated LS Update PDUs on node failure
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7.2.1.2. OSPF Cycle Detection and Prediction

During the process of OSPF re-convergence, temporal loops can occus illhstrated in
Fig. 7.8. Even a simple topology as depicted in this figure a temporal &wopappen upon
failure. Let us for example assume that the link between B gadsCand that C and D have
updated their FIB, but E has not updated its own FIB. For packetdfrimwards B, this can
result into C forwarding packets to D, forwarding packets to E, sentam back to C,
because E still has a forwarding entry with as next-hop C on its shortest path to B.

Figure 7.8 Temporal loop on failure

This can lead to temporal packet loss and local network overload. teochm@ques such as
ordered FIB [44] updates are designed to avoid transient loops. Howlesdechnique can
slow down re-convergence and changes the router update process.

Therefore, a learning technique is desirable which is able to qudekéet cycles during the
re-convergence process. The desired technique can mark packetmlkieatise of updated
forwarding entries (for example, updated FIB entries in C). Based this marking, nsigtdpor
D only make use of update forwarding entries to forward these (redjopackets. If such
entries are not available, a limited number such packets can Heassgrobes to detect
possible resulting cycles. From the moment a cycle is detemtadihe prefixes associated to
a certain interface, another forwarding interface could be sdlaxi@void the detected cycle.
Besides this reactive component, a predictive component should besuwdas to forward
prefixes over the interface which has the lowest probability of forming cycles.

7.2.1.3. Minimizing Packet Loss During Routing TabBwitch-Over

By default the updates from step 2 towards 3 of the cited update ptomgsen in random
order, meaning that a prefix update related to important traféarst could be delayed much
longer than necessary. More optimized behavior should take into accolistines#raffic
characteristics such that updates can be made more efficgergacket loss during switch-
over should be minimized. However, the goal of introducing additional logicke achieve
this behavior should not result in heavy computational tasks, as thld again slow down
the entire process; thus, contradicting the initial goal. Therefore, theifag) is targeted:

1. Develop a real-time learning traffic monitoring mechanism whidibis to detect the
ideal interval in between which traffic needs to be monitored andhdar long it
needs to be monitored. The resulting mechanism maintains ssafisyicmeans of
counters) of the number of packets, per destination prefix in the fongatale. The
intensity of this task is linearly proportional to the number of dastin prefixes.
Thus, the monitoring mechanism should be counter-adaptive: large sangpénigr
large flows (elephants) while being able to monitor small flgmie) by means of
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small sampling rate. As this is a well-investigated resedwoafain, further elaboration
can be based on for example ANLS techniques [45].

2. Develop a classification mechanism to rank the resulting tupteffiq stream,
volume) in a set of classes. The mechanism should be computationa#yefficient
than known sorting algorithms (see Sec. 7.2.2.). A first approach g usachine
learning for selecting sorting algorithms can be found in [46].

3. Work out a heuristic such as to optimize the quantum interval overdivea the
input of a set of traffic streams, their volumes and their assaticlasses (previous
step). The ideal quantum time results into minimal packet hyssmaking an
intelligent choice avoiding that more high importance traffic sgas(previous step)
have to wait on lower important classes in order to be switched-over.

7.2.2. Interaction with Learning Module

The intra-domain routing system is distributed as network nodes goivate by sending
each other Hello PDUs (neighbors) and LS PDUs are flooded to allttherkanodes (input).
Output among the nodes is restricted to LS Acknowledgement PDUsoseath other to
confirm the processing of a received LSU PDU. The decision makitigeirouting system is
decentralized as all the nodes build up their routing table individ(fadkever being based
on information synced with other nodes).

7.2.2.1. Inputs to Machine Learning Module

The following input is available at nodes:

* Routing protocol related (all input is locally available): ldeRDUs from OSPF or
BFD, LS PDUs from OSPF, arrival time and associated mdads, and link load
information.

» Traffic related: during measurement at the forwarding plane amad d given traffic
stream.

7.2.2.2. Output of the Machine Learning Module
Inputs are indeed time-varying as PDUs and their related atsilohiEnge over time. The
desired outputs are depending on the desired tasks:

* OSPF modeling and clustering

» Traffic dependent router update processing (based on traffic-related input)

* Predictive module for estimating effect of routing configuration
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7.2.2.3. Interaction with the Routing System

Routing Engine EvM, RsO
A
=N Olo
O s
>
IT]
EVM
Monitoring Engine CD, Cognitive Engine Forwarding Engine
RsO CD
EvM = (OSPF) Event Modeling and clustering (sec7.2.1.1)
CD = (OSPF) Cycle Detection (sec 7.2.1.2)
RsO = Router switch-over Optimization (sec 7.2.1.3)

Figure 7.9 Interactions of the resilience use case withBECODE architecture

For the case described in Sec. 7.2.1.1, the Machine Learning Engine (otiveogngine)
receives its input from either the Routing Engine QRainterface) or the Forwarding Engine
(via CF interface). The collected information comes from incoming PDds fOSPF or
BFD. This input is used to learn correlations between OSPF e{cdnésers). These will be
stored in theKl B. When a certain pattern is detected in the Machine LeaEmgine (for
example early failure detection, or failure correlation) a decis sent to the Routing Engine
(via CR interface) as shown in Fig. 7.4. This decision should subsequently tBR¥ere-
computation. The entire learning process of this case is local.

For the case described in Sec. 7.2.1.2, the cycle detection funcyionakhe Machine
Learning Engine receives its input mainly from the Monitoring Enginetime traffic) and
the Routing Engine (the used topology deduced from the Link-State d3iadadeagain
stores learned information in th& B. Upon cycle detection, the Machine Learning Engine
signals to the Routing Engine and Forwarding Engine to directly senthgytchffic on
another interface. The entire learning process of this case is local.

For case discussed in Sec. 7.2.1.3, the Machine Learning Engine needsngatiaffi-
related information from the Monitoring Engine in order to model th#idrclasses and to
deduce the ideal monitoring and inter-monitoring interval. Theséwasparameters will be
fed back to the Monitoring Engine (both directions via@winterface). Upon the reception
of a LS Update, the routing engine triggers the Machine Learning Eimgimder to optimize
its routing-forwarding table update process in function of minimizindgtdoss (requesting
for traffic classes, and ideal quantum interval sequence). ftire éearning process of this
case is local.

7.2.2.4. Machine Learning Process and Technique

For case described in Sec. 7.2.1.1, learning will happen at two stagedefore and one
after failure occurrence. Before the failure, one can only muygatal protocol dynamics
such that the given model can be used to estimate how far the @itwration falls regarding
the modeled protocol dynamics. Once a failure has occurred, this atforncan be used as
feedback and be taken into account such as to model correlatedsfailupeint-to-point
networks (SRGs) or MA networks (correlated adjacencies, Sec. 7.2.1.1).
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All learning involved happens online, except for Sec. 7.2.1.2. For thedsasessed in Sec.
7.2.1.2, learning happens during traffic measurements, to deduce trafficdvetizsh that
monitoring intervals can be estimated continuously to classify the graffic streams. All
learning involved happens online except for classification for whishpossible to introduce

upfront learning.
5

4

35

3

25

2

15

pl p2 p3 pd p5 p6 p7 p8 p9 p10 p11 pi12 pi3 pl4 pi15 0‘;
0

pl pd4 p7 p9 p3 p5 p8 pl10pi1 p1d p2 p6& p12 p13 p15
Figure 7.1Q Classification of traffic streams in terms of wole

O = N W s o

8. Path Selection

8.1. Informed Path Selection

8.1.1. Use Case Description

While, previously, a single path between two machines was assumadg wew seeing with
the evolution of the Internet topology expansion the rising of multipllespaith different
performance. For example, end systems can be dual stack, or therknean be multi-
homed. Another example is when LISB¢ator/Identifier Separation Protoco]33] is used,
thus allowing a given identifier (i.e., a client or serverp&reached via multiple locators
(i.e., edge routers). In such a context, it is crucial for boptiGgtions and operators to easily
select the path that better suits their needs. This is cli&ligsue we tackle by proposing a
generic path selection service that works in any context requiring a pattiosele

8.1.1.1. Path Selection Requirements

We are heading towards an Internet that makes available apahefto the host (in terms of
source and/or destination addresses) for reaching, for instawycepatent. In such a context,
it is thus crucial for applications to select the "path" (ite2,<4source, destination> address
pair) that better suits their requirements. These requiremegkd be expressed in terms of
network performance (e.g., delay, bandwidth). In addition, it would be ititeyefor
applications to increase their reliability. Indeed, by taking intcoaect multiple paths,
whenever the current path fails, it should be possible to quickheasity switch to another
path. Further investigation should reveal the real benefitsawhdrcks of such a switch.
Another requirement for applications refers to the cost eastsaciwith network usage.
Applications might want to favor the cheapest path and, consequentheaskectheir
networking bills. In addition, battery-based devices would like to avmduoming too many
resources when selecting a path. This means that, ideally, theh@atcterization should be
done elsewhere. Finally, applications should be able to decide by themséiich path to
use, meaning that the path selection cannot be forced on them byl @dtty but rather
suggested.
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Allowing each application to make this selection by itself is netistainable solution (for
scaling and triggered control/responsiveness and consistency/pant@measons). Instead,
letting applications to cooperate with operators might lead tomawn situation. Indeed, by

helping applications to select a path, operators can meet theiremguirements. The first
requirement of an operator concerns the details it should revdiwotlae path selection. It

Is obvious that operators do not wish to disclose details on theiotpg® as well as their

policies. Operators might also want to influence both incomingoamgbing traffic, so that

they could control their own network usage in terms of performance dmtraterms of cost

and traffic engineering (i.e., some links could be defined as primary Whike others are

backup links).

As a global requirement (i.e., it is common to applications and @pgyaany path selection
service deployed should be scalable, should not imply a change in routeexjdhstate
information in them. Moreover, it should also be generic, i.e. addressing futuréasenar

It is well recognized that traffic fluctuates with timi.is thus mandatory to build traffic
engineering systems that are traffic independent. This is clearly theaappve follow in this
section when discussing the high-level behavior of a path selection mechanism.

8.1.1.2. IDIPS Server
Our path selection mechanism is called IDIPS "ISP-Driven Informed Pattti&el437, 38].

Our assumption is that specialized boxes are installed in themethhese boxes, called
IDIPS servers, are in charge of running a path selection algoritfectieg the operator
requirements in terms of traffic engineering. Every time an agipit or service needs to
select one path among others or to rank a list of paths, it cothactsx that replies with
ranked paths. In our terminology, the specialized box is called a "sewdranything
guerying the server is called a "client”. It is worth noticing thate than one server can be
deployed in the network and that clients do not have to deal with tigat fervers can be
deployed in anycast).

With respect to the ECODE architecture (see Sec. 5),0HeSI functionality can reside in
routers or in dedicated servers. When it is activated in a router, the localdeseiR, CF and
CM(see Fig. 5.2) will be directly available to access the iRguForwarding and Monitoring
Engines present in the router. When the IDIPS functionality is deployseparate servers,
the principle remains the same, but the local interfad®sCF and possiblyCM will be
accessed remotely.

Any request sent by a client contains the following informationstacli sources, a list of
destinations and an optional performance criterion (e.g., routeitgdaliihe server processes
the request and builds a list of all possible paths based on thodests. This paths list is

then ranked using information on the network state owned by the serwethatithe higher

the rank the more promising the path.

Sources and destinations sent by the clients are typically IPiv6raddresses. Instead of
replying with complete addresses, the server can work with prefixegher words, if two
paths with different ends have the same rank and if it is podsildggregate the sources
within a single prefix and to aggregate the destinations within aesprgfix, the returned
ranked list will only contain one path where the source is a pesfcompassing the two
source addresses and the same for the destination. Aggregatiensefferal advantages. It
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allows one to reduce the size of the replies (e.g., a single peafiinclude several addresses
indicated in the request) as well as the amount of potential pajw®cess. In addition, it
avoids revealing topology details and network policies to clientsefieeless, a drawback in
such an approach is the loss of precision (e.g., the reachabilitgrefiais not the same as
the reachability of a host).

In addition to a ranked prefix pair list, the server reply contansme-to-live (TTL)
information indicating how long the path ranking remains valid. This iBTtonfigured by
the network operators and depends on the performance criterion prbyittesl client. When
the TTL expires, it is up to the client to contact the path seteservice to obtain a new path
ranking.

Considering ranked prefix pair lists allows one to reduce theofigktacks or the disclosure
of sensitive information to competitors, which is often required by I&Rasgther, it allows the
operators to modify the ranking algorithms according to their needsuwithmlving clients.
It thus separates the clients and operators while enabling cooperation.

8.1.1.3. Cooperation between IDIPS servers

Better scalability can be achieved if an IDIPS server @&y on other IDIPS servers
(typically in other ASes) to reduce its measurement load. ¥ampgle, IDIPS servers could
measure path characteristics between themselves, rather thanren{at locators/prefixes.

If IDIPS servers are all associated with a large sebadtbrs/prefixes, and if every IDIPS
server can measure locally the characteristics of pathgdsvita own locators/prefixes, we
may approximate the characteristics of a path by combining the ctdrgstacs of the
following 3 paths:

« from source to source IDIPS (monitored by source IDIPS),

» from source IDIPS to destination IDIPS (monitored by either or both of them),

» from destination IDIPS to destination (monitored by destination IDIPS).

If there areN IDIPS servers anH locators/prefixes per IDIPS server, the number of paths to
be monitored per IDIPS server boils down fr@tN*K) to O(N+K).

This is a win-win situation, because all IDIPS servers win if@bperate. To this end, IDIPS
servers in ASes could join a P2P (peer-to-peer) system. Synstane edge networks could
run an IDIPS server on their edge router, and join this P2P system.

For delay measurements for example, the measurement load carthiee faduced. N
servers ping all the other ones, the measurement lIc@gN\f$. Now if IDIPS servers run an
Internet Coordinate System (ICS), e.g., Vivaldi [39], every IDIP8esauings a fixed number
(say 32 or 64) of other IDIPS servers only, and infer their codeina a suitable metric
space, allowing them to estimate other delays that are radumesl. The load boils down to
O(N) instead oO(N).

In this scenario, every IDIPS server would also accepisidaode its coordinates to others.

This can be seen as an extra level of co-operation, but it paygddiing once again the
measurement load by a factér
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8.1.2. Interaction with Learning Module

An important engine of the IDIPS server, called "Path Informatiofe€ot" (PIC), collects
path information. Information is of two types:
* Administrative information (i.e., network policies and billing, busoa routing
information such as BGP or IGP);
* Measurements information (i.e., active and passive measurements).

This PIC element can be seen as a particular Monitoring EggeeFig. 5.2). Therefore, it
will communicate with the Machine Learning Engine to providenitsasurements. The
Machine Learning Engine will learn from these data and communigateturn with the
Monitoring Engine, e.g., to adjust the frequency of active measureméetfiaiure of these
exchanges will be further elaborated below.

8.1.2.1. Measurement prediction and adaptation

The problem of predicting future QoS quantities from past observationbecatated, in
machine learning terms, as tame series regressioproblem. The datedD consists of
measurements from the previous time stégpack to some time inddx in the past: D = {y
1, Ye2, ---» Yei}. A model of this time series aims at predicting the next vafuie metricy;
and, possibly, additional values in the futye, Yi+2, ... This problem thus reduces tdime
series modeling and predictigmmoblem.

A time series istationaryif its statistical properties, such as its moments, do notgehaver
time. Various studies [15, 16, 17] have found that the time series tui ne evolution of
metrics considered by the IDIPS server piezewise stationaryAs a result, we can partition
a time series int& intervals and consider the time series to be stationary iasyglénterval.
We identify two issues:

1. How to detect a change of regime or, in other words, how to determistatianary

intervals.
2. How to model time series in a given stationary interval.

We will first address the second issue by considering various mgdaliernatives (auto-
regressive, moving average, and auto-regressive moving average madalsedond step,
we will consider Switching Markov models that generalize the previadels by allowing
for various regime changes.

The application of those time series modeling to Internet QoS nemasots raises several
issues:

* Among the possible time series models considered, one needs to ingesthst is
the most appropriate choice for QoS measurements. For a givenfaradg] the best
meta-parameters need to be chosen. Selection criteria inbledamount of training
data required to come up with reliable estimates, the ad#gmée of on-stationarity of
the observed time series, space and time requirements durirgathind phase and
the prediction phase.

* The first objective of QoS measurements modeling is the pi@dict the next
measurement(s) based don past observations. Past observations magr,hoote
always be fully available since one would like to reduce as mugbossble the
amount of active probing. The main issue is to maximize the qudlitye predicted
measurements while minimizing active probing. In other words, one logitoize a
performance/cost trade-off of some sub-sampling of the actual meastseme
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» Parameter estimation is the central task of a learningigdgowith a usual trade-off
between the complexity of the model to be estimated and the robustndiss
estimates. In this context, maximum likelihood estimation is nogessarily the best
choice. Modifying the maximum likelihood can be done either explicitlyddirey a
regularization term to favor simpler models or, implicitly, by srhow the maximum
likelihood estimates. One open issue is to determine which of those®ptork best
in terms of quality of the estimated models and computing time.

* The presentation focuses so far on the modeling and the prediction of emstmal
time series, for instance the delay measure. In our IDIPS xtprseveral related
measurements are of keen interest (delay, bandwidth, jitter, Etdgnsion to
multivariate time series modeling can be considered. The objestite@ explicitly
consider the dependence between various measurements rather thangrtbeet
independently.

These time series prediction techniques are complementaryritent development in
measurement scalability [40].

8.1.2.2. Finding low delay paths

A first example of a co-operation between IDIPS serveis assume that they all take part in
an ICS (Internet Coordinate System) and will therefore irffeir tcoordinates in a suitable
metric space. By measuring RTTs with a limited set of neighbiBtSBervers (say 32 or 64),
every IDIPS server will nonetheless have good RTT estimatiomdl wthers, at no extra
measurement cost.

Moreover, by observing the ICS (e.g., its inaccuracies, its ogmiltf we expect to infer
other interesting path characteristics. For example, if tiseea indirect path between two
IDIPS servers, via a third one, that provides lower latency (whatférred to as a TIV, i.e.,
Triangular Inequality Violatioly, it is known that the ICS will be inaccurate and some
coordinate may not stabilize. By observing suitable variables #mtie these phenomena,
we plan to infer when there are shortcut paths for a given paowte-destination IDIPS
server. This again is useful to trigger a search for the$s paid therefore propose a larger
set of interesting paths to rank.

We have already identified two sub-problems to be addressed by Machine Learning:

8.1.2.2.1. Shortcut detector

This detector should either predict whether the best path betweelDIPS servers is the
direct path between them or an indirect path via some intermdBiE& servers (in which
case, this is a binary classification problem) or predictstpeated gain of the shortcut (in
which case, this is a regression problem) [41].

Input of the shortcut detector: source and destination IDIPS servers, |ICllesria

Output of the shortcut detector: a criterion (or set of combinedriajittelling with high
confidence whether or not there exists an indirect path (via etheers) that has a lower
RTT than the direct path.

The input can also include the level of (relative/absolute) gainstioetcut path should
provide, in which case the output of the learning algorithm predicts whether or not tisése exi
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an indirect path of this level between the source and the destinatiotiher possibility is to
ask the learning algorithm to predict as an output the gain of the shortcut path.

8.1.2.2.2. Relay detector

This detector should predict the intermediate IDIPS senbes dre more likely to offer
interesting indirect paths to some destination IDIPS servethisncase, the output of the
machine learning algorithm is thus a ranking of IDIPS servers according to their ptpbabi
offer a shortcut path between the source and destination seRrem a machine learning
point of view, this could be considered as a ranking problem.

Input of the relay detector: source and destination IDIPS serggys for which we know
there is an interesting shortcut with high likelihood, see above).

Output of the relay detector: a criterion to narrow the seafcéhtermediate IDIPS servers
that are likely to provide interesting shortcuts paths betweersdhece and destination
servers.

For both shortcut and relay detectors the learning phase can ladizedtand off-line. When
models (e.g., the two above-mentioned criteria) are learnt tlyisti@y can be plugged in all
IDIPS servers afterwards.

Models can also be tuned on-line in a decentralized way. For example, one could fifsé plug t

bootstrap model in all IDIPS servers and then tune their panametally by exploiting
some online learning strategy.

9. Accountability

9.1. Profiling and Accountability

Accountability has always been a requirement for the architeofuitee Internet but at the
same time, it has never been satisfactory addressed [52].t)rsdate researchers [13, 50]
have observed that a solution has not been achieved due to the elusivierdef Internet
accountability itself. Thus, plainly defininfairnessin terms offlow ratesand how these
flows impact the network has been an impractical way of addregnigsue. The profile-
based accountability system proposes to go beyond simple flow ratelcbgticorrelating
profiles with subscribers’ usage and their impact on the netwookiness. The definition of
profile and accountability is part of this system work. Whilerafile can be created
depending on different measurements, such as flows, packets oramsgidn/correlation,
accountability can be related to different entities suchuseg a host or even an application.
[55, 56] offer a both a good list of possible flow measurements anthprehensive review
of machine-learning techniques used in traffic classifications Thian attempt to tackle a
complex issue, thus as we further advance in the project andegiibdck from discussion
and experimentation, adaptation and evolution of the use case and wysiemill probably
be required.

9.1.1. Use Case Description

To tackle the accountability problem there are three bssies to be addressed that requires
proper definition and clarity, i.e. who is accountable, for what and hawnetsure, and the
consequences of failing. Moreover, profiles are defined by both tgfterns and how the
behavior of these patterns affects the network. In turn, tqadfierns are characterized by the
subscribers’ network packet flows. Information of the network traffiembedded in the
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protocol headers and in the dynamicity of the packet flows, thus traffic chazatterican be
derived by closely examining and monitoring these two groups of parameters.

9.1.1.1. Who is Accountable, for what and how to &4ere

There are several possible answers to the question on who is accountable. Lookirgga¢ the
from a microscopic to a macroscopic level one can define respdagdibidifferent entities
such as aocket anapplication a hostor asubscriber We will focus on the subscriber’'s
definition, which is characterized by all the traffic in aelicard to/from a user connected to
an access network. The advantage of this definition is that ia legal or business aspect,
since the relationship between the ISP and the subscrib&edaamed in a contract through
which accountability could be imposed. From a technical perspectivia anpractical sense,
subscribers or more generically the customer premise equip@Pii) (of a subscriber is
assigned an IP address (usually by an ISP PPP- or DHCP-sievexudhentication from an
AAA-server), which is used by the ISP WAN to identify trafficftom a subscriber. All the
traffic from the different devices in the home network goes througICPE NAT. Thus, seen
from the network, a subscriber traffic flow can be identified bylbhe@ddress given to the
CPE.

The second question, what a subscriber is accountable for and how sorenehis
accountability is a more complex issue. Here, we expect mackaneiqg techniques to
contribute with a fresh approach to an important problem. There areapproaches for
defining profiles. Anexpertcan be used to provide a priori discrimination to traffic patterns,
which could be used to feed a (semi)-supervised machine-learninghatgadepending on
how expensivethe a priori discrimination procedure is to producing the labeled. data
Alternatively, unsupervised methods could be used to infer profiles tinensubscribers’
traffic pattern itself. Moreover, profiles should not be limitedtite task of discerning
subscribers’ network behavior, but it should also relate to the tmgadhe network. In
addition to defining profiles, machine-learning techniques shall be wtsedonitor
subscribers by classifying them to a particular profile. It shaigo indicate the deviation of
subscribers from a specific profile.

9.1.1.2. Network Traffic Characterization

As far as profile-based accountability is of concern, trafbevé will be mainly based on
network and transport layer protocol information, with the possibdit using link layer
header (WAN information, i.e., CPE MAC address). The use of appiicktyer information,
through Deep Packet Inspection (DPI) technology is out of scope, duee toedhired
computational resource. Moreover, it is expected that som#i®finformation will be
inferred from the machine-learning technology. In addition to the netwéskmation at the
protocol level (independently of the layer), traffic patternschi@acterized by the behavior
and dynamics of packets flows in the time domain. Some measurdhentight be used to
characterize the traffic pattern are number of flows, avepagket size, number of packets-
infout, and average inter-packet gap per flow. Moreover, results aifilthesk al (see Sec. 6),
specially referring to adaptive traffic sampling and managemdhtisectly contribute to
network characterization for profile-based accountability.

9.1.1.3. Profile Modeling

Profiles can be designed and devised in different ways. For exampfdes can categorize
subscribersor profiles can be modeled to characte@otions. Modeling profiles in either
way demands different specifications and requirements from the system.
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Subscriber profiling assumes that there are different types of users,deends or uses the
Internet in discernable ways, with respect to the resounegs¢quire from the network. As a
consequence their requirement and impact on the network are tdiStiecadvantage of this
model is that it enables operators to determine new ways teededir Usage Policies (FUP),
which are in fact the binding contract a user has with the operator.

Action profiling is another way of modeling profile-based accountabilitgtesn. The
assumption is that these profiles will define actions subseribeg undertaking in the
network. More specifically, the teraction means network usage that has distinct properties
and traffic load demand. For example if we translate thi®madt application level, users
might be performing different tasks that have distinct network reaugints, such as normal
web browsing, use of P2P applications or file download. One-way of lookiragten
profiles (in respect to the subscriber profiles) is that théynel¢he behavior on a restricted
set of activity a subscriber undertakes within a certain period of time.

In summary, subscriber profiles try to characterizegieeral subscribers’ activity in terms
of traffic pattern and network demand. While action profiles chamaetspecificactions that

a user undertake for a restrict time period (see Fig. 9.DfildPbased accountability
ultimately refers to the subscribers’ profile, whaletion profiles have been introduced as a
means to achieve this end goal. A challenge then is to infer aribaloscprofile from a
sequence of action profiles, which will characterize a user and his/her demdwednetviork.

Flow Flow

Packet Packet

Profle
A

Subscriber classified . J
according a certain

w

Figure 9.1 Schematic view o$ubscriberqleft) andaction (right) profiles.

User “instantaneous” profile “behavior”

9.2. ECODE Architecture Cross-Reference

9.2.1. System Architecture

The general functional diagram of the ECODE framework shows thebdied Machine
Learning Engine and its relation towards the traditional elenwnas IP network, i.e., the
routing and forwarding engines (see Fig. 5.1). While the routing enginduisdamental
element, profile-based accountability is not expected to relatestéunction. It will interact
with the Forwarding Engine, both at the data collection and driviside®ack to this engine.
The profile-based accountability functional modules are divided in lbtaoks, where the
machine-learning part is shown as the “classify” block in Fig. 10l $&8e. 10). The system
will operate in two parts, one subsystem, i.e., learning, defining théeprdit the same time,
a second subsystem will be responsible for classification. Thefitat functional blocks
composed the learning domain, while the classification domain issemed by the complete
loop depicted in the functional diagram. The classification subsystelides decision on
how the system should react upon classification. If a subscrifeumsl to be breaching
his/her profile, the system might decide to execute measuresptha user to his/her pre-

Deliverable D2.1 Page 57 of 70



FP7-ICT-2007-2 — ECODE : Experimental Cognitive Distributed Engine

defined profile. For example, it can decrease the availalléwbdth or block flows to that
subscriber.

9.2.2. Network Architecture

As part of the networking domain, technical objective (b3)-profilethasccountability is
closely related to the objective (al)-adaptive traffic samplimgraanagement. The first step
for profile-based accountability requires data sampling and pressing, which consists in
getting the raw data and perform feature selection and extractignisTpart of the objectives
of adaptive traffic sampling and management. Fig. 9.2 shows the anatatedtagram
relating case al and case b3. Results of the adaptive saffipling and management task
will be directly used as part of the solution for the profile-based accoutytabillengers.

lier 4 1S5 lier 1-2 151
¥

g

W

- HJ
T

[}

case bJ
Figure 9.2 Architectural diagram showing case (b3 — in n@afile-based accountability and its
relation to case (al — in blue) adaptive traffimping and management

Fig. 9.3 shows an ideal network configuration including the profile-baseduatability

(PBA)-engine. While the PBA-engine resides on the access netwerlengine would be
capable of receiving network information from other elements. In Way, a more
encompassing inference of the subscribers’ profiles in respetitetanetwork resource
allocation can be achieved (more detail in deliverable D®#tail Experimental Plan and
Scenarioy Optimally, the PBA-engine will operate in a distributed, teaé mode, and
learning is distributed over the access nodes where the engine resides.

Node A

IP/MPLS
Backbone
s =
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Figure 9.3 Diagram showing the profile-based accountabititydule distributed over the network
elements

9.3. Interaction with Learning Module

Many studies have already track the use of machine learning fbc ftafv identification
[51, 56]. Some of these work focus on application identification [49, 54, B8 wthers on
discovering underlines rules that governs the communication over a k¢s8prThe aim of
profile-based accountability goes beyond traffic classificatiorshtiuld infer the demand
subscribers are requesting from the network, so that the netwarlirces can bdairly
allocated and accountability properly imposed respecting the costrastribers have with
their operator. Machine learning is expected to strongly contributéhis task. The
architectural specification of the desired system, in terms nbérdaction with the
routing/forwarding system and inputs and outputs to the machine-leaalgogthms are
described in more detail in the next subsections.

9.3.1 Type of Routing/Forwarding Engine

The task of the machine-learning algorithm is two-folded, first tineethe profiles and
secondly to classify (with a certain metric) traffic usageoeting to the profiles. The first
problem requires that the system @stributed such that the data set encompasses all
possible subscribers’ traffic. The broader the dataset is inplia richer, i.e. more general,
input for the learning systems. The PBA-engine would require exchangmmgnation to
achieve the distributed scheme, thus each system would régeiisand provideoutputsto
other nodes. The second problem, i.e. classification can be achievedigneatralized
manner, since the system is already distributed for the fiokigm. Classification decision
can take advantage of the resources and capabilities of all the distRBAeEngines.

9.3.2. Inputs to the Machine Learning Module

The inputs for the machine-learning module are deduced from measuréma¢ctsaracterize

the subscribers network traffic (see Sec. 9.1.1.2). Those measwenhestribe the

information over connectivity and dynamicity of the traffic, capturthg behavior and

activities of packets flows. However, more importantly the ingbtauld capture information
of the subscribers network demand, and the resources and availability network as a
whole. So qualitatively, the system has to be able to yield profiksch encompass
information on both the load, the subscribers is requesting from the keandrat the same
time indicate the present network load. Quantitatively, it isrcleat inputs can assume
different types such dsit, integer, real or words from some alphabkloreover, time is a

fundamental element. These parameters varies in time, and sohdoesidamental aspect
that we try to model, i.e. the profiles that reflects the diffesabscribers’ traffic pattern
behavior.

9.3.3 Outputs to the Machine Learning Module

There are two major tasks expected from the learning systerh will define two types of
output, one for therofile learningstage and the second for thfile predictionstage, or in
our case therofile classificationstage. Profile learning refers to the process of defining or
categorizing profiles. In this stage the output from the input Vasaban determine the
partition of the dataset into different clusters, with each eétudtaracterizing a profile. Each
profile indicates specific network traffic behavior associatéti the usage and demand on
the network resources. Ideally, the learning algorithm would be anepwlistributed semi-
supervised or unsupervised system, where PBA-engine would reside &3 acdes within
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an ISP. Profile prediction refers to the classification prooéssers according to the learned
profiles. The output of this stage should be a classification dacisi one of the possible

classes. In addition, a proximity metric, indicated by a numeviakle, should reflect the

distance subscribers are in respect to the possible prdfilesinformation could be used to
guantify to what level subscribers are breaching their network accountability.

9.3.4 Interaction with the Routing/Forwarding Engine

At this stage, the results of the process described for tleelPBine is expected to have at
most passive influence on the routing system, for example triggeotacpt flags such as in
Explicit Congestion Notification (ECN). Most likely, it will acin the forwarding system, by
either trying to bring the subscriber to the assigned profile or bylpogishe subscriber, for
example by delaying or just dropping packets. Moreover, what is requaracttie system is
a continuous monitoring of subscribers’ profile information.

10. Analysis Grid

This section introduces an analysis grid of the network and systéiteatare (as detailed in
Sec. 5) against the use cases described in Sec. 6, 7, 8, and 9. Theeobjetiis analysis

grid is to determine the architectural items that willfbeher investigated throughout the
project lifetime and reach a common/reference architecttaaiework. This analysis will

consist in dgunctional analysisnd aperformance analysis

10.1. Functional Analysis

To determine the characteristics of the proposed experimentsteatare against the closed
control loop (detection, processing, decision, and execution) functiowadysess will be
performed using a pre-defined set of functional criteria. Assgsbe degree of conformance
of the experimental architecture and its capabilities wegpect to the closed control loop
depicted in Fig. 10.1 is the main objective of this analysis. Notethieafunctional blocks
depicted in this figure may be the object of further decomposition.

Hules (from
Systerm L
Y AL - ﬂl’lﬂ.lyﬁe b 1 Jecde .-__9@:}9;1:_1\?&,.5 and
Knowledge constraints)
Y
Monitoring (from iR i s Uonhguration and
data acquisition) e ARG Organization

¥

Forwarding/Routing Engines

Figure 10.1 Closed control loop

Indeed, as more than one design may be proposed, functional analypewsréul tool to
determine the support level of each functionality by the experimemwtatecture depicted in
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Section 5. Our functional analysis study will also provide the exactaatigins in terms of
correlation/dependency and constraints the supported feature imply on other features.

10.1.1 Criteria

Functional analysis criteria are provided to evaluate and abseks/el of conformance of a
given design. They translate the fundamental networking rules (alscedete as network
design principles) that allow the identification of the forwarding, ingutand machine
learning needs when assessed against the needs resulting fromgheotiasclosed control
loop.

10.1.2. Methodology

Different attempts to define software quality as a complex guribat can be decomposed in
more detailed characteristics have been presented since 19/Qdc€all et al, 1977. The
key idea was to enable evaluation of quality through the evaluation of deteded
characteristics that are supposed to be easy to measuress. &andardized quality models
based on this idea, e.g. ISO 9126 were subsequently developed based on this concept.

McCall's Quality Factors (McCall, Richards, Walters; 1977)ves a direction towards
measuring software quality. This model that aims at system develdpeng the software
development process identifies 3 areas of software work:
» Product Operationrefers to the product’s ability to be quickly understood, efficjentl
operated and capable of providing the results required by the user
* Production Revisiorrelates to error correction and system adaptation
* Product Transitiondistributed processing, rapid change in hardware

McCall expressed software quality in terms Idf measurable quality factorsThese 11
guality factors focus on three important aspects of a softwadugr Some of the quality
factors are responsible for successful product operation; sontfee ofuality factors are
responsible for successful product revision and some are responsiblecéessful product
transition. The 11 quality factors are grouped with respect to thaseas of work

Product operation:

» Correctness the extent to which a program satisfies its specificatiod fulfills
customer’s mission objective.

* Reliability: the extent to which a program can be expected to perform ésdied
function with required precision.

» Usability: the effort required to learn, operate/use, prepare input, angretteutput
of a program.

* Integrity: the extent to which access to software or data by unauthorizexhpean
be controlled.

» Efficiency the amount of computing resources and code required by a program to
perform its functions.

Product revision:
» Flexibility: the effort required to modify an operational program.
» Testability the effort required to test a program to ensure that it pesfarsnntended
functions.

* Maintainability: the effort required to locate and fix an error in a program.
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Product transition:
» Portability: the effort required to transfer the program from one hardwadéora
software system environment to another.
» Reusability the extent to which a program or parts of a program can be reused
another application.
» Interoperability the effort required to couple one system to another.

All the quality factors mentioned above depends upon set of 22 metnitgthe dependency
can be given by the following formula:

Fo=ccm+com+ ... +Gm,

where,
Fq is the software Quality Factor;
Cn are the regression coefficient sughta, + ... + 6= 1.0
my are the metrics

Most of these metrics (listed here below) can be measured thugdjecThese metrics can be
used in the form of a check list. The grading scheme for each @Rtheetrics is between 0
(low) and 10 (high). The value of the regression co-efficient isrikgre upon the products
and the weight given for that particular metrics.

The 22 metrics (or criteria) are defined as follows:

* Auditability: the ease with which conformance to standards can be checked.

» Accuracy the precision of computation and control.

» Communication Commonalityhe degree to which standard interfaces, protocols and
bandwidth are used.

» Completenesghe degree to which full implementation of required function has been
achieved.

» Complexity the degree to which the program is complex (complexity metric)

» Concisenesghe compactness of the program in terms of lines of codes.

» Consistencythe use of uniform design and documentation technique throughout the
software development project.

 Data Commonality the use of standard data structures and types throughout the
program.

» Error Tolerance the damage that occurs when the program encounters an error

» Execution Efficiencythe run time performance of a program.

» Expandability the degree to which architectural, data or procedural data can be
extended.

» Generality the breadth of potential application of program components.

» Hardware Independencdhe degree to which the software is decoupled from the
hardware on which it operates.

* Instrumentation the degree to which the program monitors it's own operation and
identifies errors that do occur.

* Modularity. the functional independence of program components.
» Operability. the ease of operation of a program.
» Security the availability of mechanisms that control or protect programs and data.

» Self-Documentatianthe degree to which the source code provides meaningful
documentation.
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» Simplicity. the degree to which a program can be understood without difficulty.

» Software System Independent® degree to which the program is independent of
nonstandard programming language features, operating system chares;teaist
other environmental constraints.

» Traceability. the ability to trace a design representation or actual programpanent
back to requirements.

» Training: the degree to which the software assists in enabling new wsapply the
system.

Each of these metrics contributes to one or more quality fae®shiown in Table 1 (Source:
Roger S. Pressman, “Software Engineering: A Practitioner's ApptodEuropean
Adaptation), Ch. 19, Fifth Edition, 2000). Note that the weight given tb sestric depends
on individual products and concerns.

Table 1: Relationships between McCall's quality factors ath metrics

quality metric
Correctness
Reliability
Efficiency
Integrity
Maintainability
Flexibility
Testability
Portability
Reusability
Interoperability
Usability

Software

Quality factor

Auditability
Accuracy
Communication commonality X
Completeness X
Conciseness X
Consistency X X
Data conunonality X
Error tolerance X

Execution efficiency X

Expandability X

Generality X X X X
Hardware independence X X
Instrumentation X X X

Modularity X X X X X X X
Operability X X
Security X

Self-documentation X X X X X
Simplicity X X X X

Software system independence X X
Traceability X

Training X

>
>
>

> >
> >
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10.2. Performance Analysis

10.2.1. Performance Analysis

Performance analysis will be conducted by considering the following events classes
» External eventsresulting in deviation(s) from initial performance objectives
(resource-oriented, traffic-oriented)
* Internal eventsesulting in deviation(s) from initial performance objectivesgurce-
oriented, traffic-oriented)

These events will be used to experiment of the Machine Learning Emgghdetermine the
suitability and sustainability of the proposed architecture undeousarunning conditions
and constraints.

The definition ofi) performance objectives anij conditions and constraints are use case
dependent and they will be detailed in the next revision of this document.

10.2. Sensitivity Analysis

10.2.1 Overview

Large-scale experimentation models (simulations, emulations, aéter) involve a large
number of parameters, making it prohibitive to run more than a dnaaflion of all
potentially relevant cases. In this context, sensitivity analgismpts to identify how
responsive the results of an experimental model are to changsgarameters: this is an
important tool for achieving confidence in experimentation and makingstdts credible.
The general goal of Sensitivity Analysis is to characterizelitgtieely or quantitatively,
what impact on a system a particular variable will havedifiers from what was previously
assumed. In other words, by using Sensitivity Analysis, the analpstetermine how
changes in one or several parameters will impact the target variable.

Sensitivity analysis quantifies the dependence of system behavitbreoparameters that
affect the modeled process and in particular its dynamics. Ited tes determine how
sensitive a model is to i) changes in the numerical value of tlaelnparameters: parameter
sensitivity analysis aims at determining the uncertainty assdaidte the numerical values
of model parameters (resulting thus in parameter estimatioridoupiediction). In this case,
sensitivity analysis is used to increase the confidence in the randels predictions, by
providing an understanding of how the model responds to changes in its pasaareleir)
changes in the structure of the model.

In the present case, we will perform sensitivity analysis on

» Detection/identification time, and rate:
o0 on traffic variations (for forwarding dependent cases)
0 on routing information/ topology variations (for routing dependent cases)
o etc.

» Execution (re-configuration/re-organization) time, and scope: on desisguence(s)

so as to determine/identify conditions for

o Oscillations effects leading to action/reaction chains
o Coupling effects leading to amplification/annealing chains
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10.2.2 Sensitivity Analysis Methods

Perturbation Theory based methodstudy a set of models which are different from a
nominal model by some small terms. Sensitivity Analysis isetyolinked with Perturbation
Theory. Perturbation Theory comprises mathematical methods thatsade to find an
approximate solution to a problem which cannot be solved exactly, by stadinghHe exact
solution of a related problem. Perturbation Theory can be applied groblem under study
can be formulated by adding a “small” term to the mathematicariggen of the exactly
solvable problem. Thus, Perturbation theory can be viewed as a t@#risitivity Analysis.
Furthermore, it can be classified as an analytic tool for theitbggsAnalysis. The main
types of mathematical models for perturbation methods are.

* Linear Algebraic Systems

* Non-linear Algebraic Systems

* Mathematical programming

The advantage of analytic Perturbation Theory based methods is thangtbsels are based
on a solid theoretical ground. The disadvantage of the analytic methtu itypically the
deviations of parameters need to be small and a good knowledge of teen'syst
structure/dynamics is required.

The other class of tools for Sensitivity AnalysisSampling based methodsAnalytical
methods require a good knowledge of the system and might require tedoulaticens. The
sampling based methods are designed to overcome these disadvéddagasirg methods
are particularly well suited to withstand the changing one-factor-at-a-@#e)(paradox.

* FAST (Fourier Amplitude Sensitivity Testhethod which deals with static models.
The main idea of FAST is to assign to each parameter a distbeger frequency
(characteristic frequency). Then, for a specific parameterydhnance contribution
can be singled out of the model output with the help of the Fourier trarafon.
FAST is considered to be one of the most efficient methods in isépsanalysis
[ref]. Among its advantages are: fast implementation, deals win-monotonic
models, allows arbitrary large variations in input paramegerd,does not require the
knowledge of the mathematical model. The latter two featuresinaggarticular
positively distinguishing FAST from analytical methods. HowevehSF suffers
from computational complexity for a large number of inputs. Mageothe basic
FAST method can only be applied to static models with independemhgtara. As,
in many cases the parameters are correlated with one anothemdezk FAST
(EFAST) has been proposed for models with correlated parameteESFAST can
address higher order interactions (see Saltelli98).

» Path based Sensitivity Analysis (of Markov Chaiias)dynamical systems: the key
idea in path-based sensitivity analysis of Markov chains isotiservation that a
sufficiently long sample path contains enough random deviations to teststieens
sensitivity.

Sampling based methods do not require access to model equations or everé¢heode.

These methods require running a series of experiments. Experiraartie either real-life or
numerical. The disadvantage of the sampling based methods is thatumhiger of

experiments required can be very large.
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11. Conclusion

The goal of the ECODE project is to develop, implement, and valebgierimentally a
cognitive routing system that can meet the challenges experibpdbd Internet in terms of
manageability and security, availability and accountability, as \asllrouting system
scalability and quality. By combining both networking and machine learngeareh fields,
the resulting cognitive routing system fundamentally revisits tipalahbties of the Internet
networking layer so as to address these challenges altogether.

Our first goal, in this deliverable, is to deeply discussBG®ODE architecture. We provide a
two levels architecture: the system and the network architecureone hand, the system
architecture deals with how the ECODE project improves thesmumouter architecture.
Mainly, the improvement resides in the addition of the Machirerieg Engine. This engine
will be in relation with the already existing routing and forwagdiengines. We also
introduce a fourth engine, the Monitoring Engine that aims at coltegath performance
information. On the other hand, the network architecture aims at eixigjawhere the
ECODE contributions are located in the network. We explain theg #hast various types of
routers, i.e., internal, edge, and access routers. Depending on thegyghea®ntributions
will be located in one (or several) of these routers.

Next, we provide a general insight in machine learning techniques. $tfesdithe learning
techniques: supervised (output prediction for a novel input after igarom a training
dataset), unsupervised (learning useful structure without any kindoofmation beyond the
raw data and grouping principles), on-line (the training data is mdvid the learning
algorithm as a batch process), and distributed learning (distributitire gfrediction or the
data to analyze).

ECODE is an experimentally driven research project built on use cases.dslitésable, we
deeply discuss all use cases considered in the project. Wexglsaen how the use case will
make use of machine learning techniques and how they will be irddgrathe ECODE
architecture, at the system and network levels. Subsequent ienglgian of these use cases
is expected to provide precious input on suitability of the proposedertthie as well as
sufficient results to assess added value of machine learning.

Thus, in the current state of the project, we cannot claim thahehgork and system
architecture provided in this document is the final one. Instead, duringghtble project
duration, the architecture feasibility will be evaluated and, nadBssadapted so that, by the
end of the project, we will have converged towards a workable architecture.
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