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1. Description of the Document 
This document is the ECODE deliverable D2.1. It provides an insight into the experimental 
network and system architecture we will develop throughout the whole project duration. 
 
In this document, we provide a general overview of machine learning techniques as well as a 
complete description of the ECODE architecture at two levels: system and network. Note that 
this architecture represents our current view of the project. Throughout the project duration, 
we will evaluate how feasible is this architecture and adapt it according to the experimental 
results. Our architecture is thus not fixed but rather a progressive process. The objective is to 
have, by the end of the project, a workable (and implemented) architecture. 
 
As ECODE is an experimentally-driven project, this document provides an accurate 
documentation of each use case, as well as how each use case interacts with the Machine 
Learning Engine we introduce (initially referred to as Cognitive Engine). In this document, 
we chose to cluster the various use cases in four groups: 

• Security and monitoring. This corresponds to use cases a1, a2, and a3, i.e., the 
development of an autonomous system for network monitoring, traffic management, 
and anomalies detection. 

• Routing. This corresponds to use cases c1 and b2, i.e., the development of a solution 
for speeding up the BGP path exploration process and allowing fast network recovery.  

• Path selection. This corresponds to use case b1, i.e., the development of a solution for 
allowing application (of any kind) to rank paths according to particular criteria. 

• Accountability. This corresponds to use case b3, i.e., the development of a solution for 
correlating profiles with subscribers’ usage and their impact on the network resources. 

 
Finally, we also provide an analysis grid that will be used throughout the whole project for its 
evaluation. The analysis will be on functionalities and performance. 
 
This deliverable is organized as follows: Sec. 2 provides a list of the various acronyms used in 
this document; Sec. 3 introduces the document; Sec. 4 provides a large overview of machine 
learning techniques; Sec. 5 discusses the ECODE architecture; Sec. 6 details the security and 
monitoring use cases, while Sec. 7 is dedicated to routing use cases, Sec. 8 to path selection, 
and Sec. 9 to accountability; Sec. 10 provides the analysis grid; finally, Sec. 12 concludes this 
document and summarizes its main achievements. 
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2. Acronyms 
AAA Authentication Authorization and Accounting 
ADS Anomaly Detection System 
AS Autonomous System 
BGP Border Gateway Protocol 
CPE Customer Premise Equipment 
DAG Data Acquisition and Generation 
DDoS Distributed Denial-of-Service 
DHCP Dynamic Host Configuration Protocol 
DoS Denial-of-Service 
DPI Deep Packet Inspection 
DR Designated Router 
E2E End-to-End 
ECN Explicit Congestion Notification 
EKF Extended Kalman Filter 
EM Expectation Maximization 
ERF Extensible Record Format 
FIB Forwarding Information Base 
FUP Fair Usage Policies 
GPS Global Positioning System 
ICMP Internet Control Message Protocol 
ICMP-SEQ Number of Sequence ICMP 
ICS Internet Coordinate System 
IDIPS ISP-Driven Informed Path Selection 
IDS Intrusion Detection System 
IP Internet Protocol 
ISP Internet Service Provider 
KIB Knowledge Information Base 
KLT Karhunen–Loève Transform 
KP Knowledge Plane 
LISP Locator/Identifier Separation Protocol 
LM Learning Method 
LRD Long Range Dependence 
LS Link State 
MA Multi-Access 
MCMC Monte Carlo Markov Chain 
MP Measurement Point 
MPLS Multi-Protocol Label Switching 
MRAI Minimum Route Advertisement Interval 
MTR Multi-Topology Routing 
OCR Optical Character Recognition 
OSPF Open-Shortest Path First 
P2P Peer-to-Peer 
PBA Profile-Based Accountability 
PCA Principal Component Analysis 
PDU Protocol Data Unit 
PIB Path Information Base 
PIC Path Information Collector 
PLR Packet Loss Ratio 
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PPS Pulse Per Second 
QoS Quality of  Service 
RIB Routing Information Base 
ROC Receiver Operation Characteristic 
RTT Round-Trip Time 
SRG Shared Risk Group 
SVM Support Vector Machine 
TCP Transmission Control Protocol 
TIV Triangular Inequality Violation 
TLS Transport Layer Security 
TTL Time to Live 
UDP User Datagram Protocol 
WAN Wide Area Network 
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3. Introduction 
Since the early 90's, the Internet has known an impressive growth and is, nowadays, victim of 
its own success: its size and scale render the deployment of new network technologies very 
difficult while it is experiencing increasing demand in terms of connectivity and capacity. 
Indeed, although the current Internet does work and is still capable of fulfilling its current 
missions, it suffers from relative "ossification", a condition where technological innovation 
meets natural resistance, as exemplified by the lack of wide deployment of technologies such 
as multicast or the new version of the IP protocol (IPv6). 
 
As a result of the Internet growth and the increasing communication requirements, a lot of 
incremental solutions have been progressively developed and deployed to allow the Internet 
to cope with the increasing demand in terms of user connectivity and capacity (see for 
instance [14]). There is, however, a growing consensus among the scientific and technical 
community that the current methodology of ``patching'' the Internet will not be able to sustain 
its continuing growth at an acceptable cost and performance.  Indeed, starting from five base 
design principles (modularization by layering, connectionless packet forwarding, end-to-end 
principle, uniform inter-networking principle and simplicity principle), the Internet has 
progressively become an infrastructure that is architecturally more complex to operate. This is 
mainly due to various layer violations (e.g., complex cross-layer design) to supposedly 
optimize network and system resource consumption, the proliferation of various sub-layers 
(e.g., Multi-Protocol Label Switching [1], or Transport Layer Security [2]) to expectedly 
compensate for intrinsic shortcoming in terms of forwarding performance and security 
functionality, IP addressing space overload (including network graph locator, node identity, 
connection termination), and routing system scalability and quality limitations (e.g., BGP path 
exploration and oscillations [3]) to name a few. This complexity progressively impacts the 
Internet robustness and reliability and in turn impacts its scalability (resulting from the 
violation of the Occam's razor simplicity principle also known as the ``Robustness through 
simplicity'' principle [4]). 
 
Hence, although the design principles of the Internet are still valid, there is growing evidence 
that the resulting design components, as defined today, face certain objective technical limits. 
On the other hand, certain objectives of the Internet are no longer adapted to users' new 
expectations and behaviors.  In other terms, the current Internet architecture is progressively 
reaching a saturation point in meeting increasing users' expectations and behaviors as well as 
progressively showing its inability to efficiently respond to new technological challenges (in 
terms of security, mobility, availability, and manageability) and socio-economical challenges. 
Even worse, misguided attempts to sustain the Internet growth resulted into progressive 
violation and erosion of the end-to-end principle. Sacrificing the end-to-end principle has in 
turn resulted in decreasing the Internet availability, negatively impacting its robustness and 
scalability as well as making its manageability more complex. Over time, the erosion of the 
end-to-end principle has also resulted in the proliferation of peer-to-peer and application-
specific overlay networks that are progressively substituting the end-to-end IP networking 
layer by an end-to-end applicative communication layer. Indeed, many new applications 
provide their own path selection to ensure proper connectivity and quality, resulting in an 
ineffective network level resources use [30, 31, 32, 33]. 
 
With an increasing reliance on the Internet infrastructure for economic and social activities, 
the impact of network-wide terror in the form of worms or viruses is also increasing [34, 35, 
36]. Improving the security and accountability of the Internet is thus of the utmost 
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importance. With the growing penetration of Internet connectivity in terms of geographical 
size and the number of connected users and the fact that users go from occasionally connected 
to always connected, the Internet infrastructure is also growing in geographical distribution, 
number of network elements and heterogeneity of physical connectivity (optical fiber, twisted 
pair, co-axial cable, wireless, etc.). The Internet infrastructure growth makes its manageability 
and configurability increasingly complex. It is thus expected that the operating cost of the 
Internet technology will start to increase more than proportionally to the number of nodes 
resulting from (i) the additional patches that will have to be developed, deployed and 
operated, (ii ) the growth of the infrastructure (in terms of number of autonomous systems, 
routers, and routes), and (iii ) the increase in both the number of connected users and their 
activity (in terms of time, location and traffic, and the heterogeneity in application needs). 
This results in increasing complexity and decreasing maintainability of user's satisfaction 
while keeping an openly accessible, neutral, and generic Internet infrastructure. 
 
In this context, the main objective of the ECODE research project is i) to introduce a new 
architectural component that allows to transpose the high-level objectives and constraints of 
what the Internet is supposed to deliver to the end-user into lower-level objectives and 
constraints than can be enforced by means of the newly proposed component, and given that, 
ii ) to determine how the proposed component can ensure the Internet is delivering what it is 
supposed to deliver and performs as expected to satisfy the end-users. This architectural 
component will be realized by means a loosely coupled cognitive system. At the node level, 
the introduction of the cognitive engine implementing machine learning techniques (and thus 
referred to as machine learning engine) is expected to improve and extend the overall Internet 
controllability capabilities as well as reducing their resulting cost. Indeed, this step evolution 
is expected to  

• Limit the cost of the Internet infrastructure growth;  
• Limit the cost of its operation (compared to the approach that would consist in 

continuously patching existing routing equipment); 
• Provide adequate solutions to the existing and foreseeable upcoming Internet 

challenges.  
The overall objective is thus to ensure the durability of the Internet (and so preserve its design 
principles underlying its current architecture) by removing complexity from existing routing 
system components. In other words, adding a machine learning engine to the Internet routing 
equipment would in turn add functionality to the global infrastructure while maintaining strict 
bound on complexity. At the same time, this additional component would decrease 
significantly the equipment and the operational cost as well as the complexity of the Internet 
compared to an infrastructure that must provide for the same functionality with continuously 
patched routing equipment.    
 
The remainder of this deliverable is organized as follows: Section 4 provides a broad view of 
machine learning techniques; Section 5 discusses details of the ECODE architecture on a 
system and network point of view; Section 6 deepens the security and monitoring use cases 
while Section 7 details the routing use cases, Section 8 is on the path selection use case, and, 
finally, Section 9 is about the accountability use case. Each use case is presented in a 
networking point of view. In addition, we explain how the use case will interact with the 
machine learning module. We further explain how the use case can be integrated in the 
ECODE architecture depicted in Section 5; Section 10 provides a grid for evaluating how the 
various use cases interact with the ECODE architecture. Finally, Section 11 concludes this 
deliverable. 
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4. Survey on Machine Learning Techniques 
Machine Learning can be considered as a subset of Artificial Intelligence, statistics, and 
applied mathematics. It aims at building computing machines that learn and improve their 
responses by learning from experience [21]. Machine Learning and Pattern Recognition are 
intimately related disciplines [22], since Machine Learning objective is to learn to recognize 
patterns in order that when new samples are presented to the system in the future, the machine 
is able to either classify this sample, among a series of classes (supervised learning), or to 
discover inherent patterns into the data in order to elucidate classes or clusters from the data 
(unsupervised learning).  
 
It is possible to subdivide the Machine Learning techniques, into the four main types of 
techniques described below [22]: 

1. Template matching: In the template matching approach, an incoming sample is 
compared against 'templates' that describe each one of the classes into which the 
sample is going to be classified. Some algorithms can be applied to compensate for 
individual sample differences against the template that can arise. This was the earliest 
type of Machine Learning/Pattern Recognition approach, which had very low power 
of generalization, that is, depending on the problem, the performance classifying 
unseen samples was low. Also, usually these techniques are not robust to presence of 
noise. It is still used in simple cases. 

2. Syntactic approach: The syntactic approach is concerned to finding the minimum 
atomic components of a particular problem, called primitives, and then finding the 
rules that govern the pattern formation made of these primitives. These rules are called 
a grammar, since they describe how a pattern is made by smaller components, just like 
words generate a sentence according to some rules. An interesting appeal of this 
approach is that it allows to gain insight into how these patterns are generated. 

3. Neural Networks: This learning paradigm is inspired from a simple model of how the 
brain works. By using many parallel computing units, it is possible to learn complex, 
non-linear, input-output relationships. It also has been demonstrated that neural 
networks can approximate any function with arbitrary precision [23]. This is 
extremely useful, since neural networks can also be used in regression problems. 

4. Statistical Learning: This is the most popular approach to machine learning. This short 
survey focuses on Statistical learning. This approach relies on a statistical description 
of the process being examined. Usually, the most relevant information or features of a 
process are obtained through a transformation process first (pre-processing). Once the 
features are obtained, probabilistic and statistical models are employed to infer 
probabilistic models that, based on the features, will classify an incoming sample. This 
process of learning is shown on Fig. 4.1. 

 

Figure 4.1: Learning process 
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Statistical learning can be divided into two big types, which are supervised learning and 
unsupervised learning. Both have advantages and disadvantages. 

4.1. Supervised Learning 
The objective of supervised learning or teacher learning is to estimate/predict the output for a 
novel (never-seen-before) input, after learning on the training data set. This predictive 
technique consists in creating and predicting value of function that takes as input a training 
data set that is completely labeled by pre-defined classes (like a teacher) that provides as 
output a continuous value (i.e., regression problem) or, predict a class label of the input object 
(i.e., classification problem) [6, 7, 8]. Typical problems tackled by supervised learning 
approaches are regression problems and classification problems (predicting a class label of the 
input). In the network area supervised learning may be used to recognize network mis-
configurations, detect intrusions, etc. The main downsides to supervised learning are that the 
system needs to go trough a training phase requiring a lot of labeled data and it may not work 
well for predicting values from input data following a different distribution than the training 
data. Some examples of supervised learning are naïve Bayes classifier, Linear Discriminants 
and Support Vector Machines (SVM). 
 
A naïve Bayes classifier assumes that the d components of the feature vector are conditionally 
independent given the class labels and applies Bayes' Rule together with the conditional 
probability rule, to find the probability that a particular sample belongs to a particular class. 
Assuming there are k classes, the probability that a particular sample belongs to a class ki is 
found by using the Bayes' Rule and applying the conditional probability rule to express this 
probability as the product of independent conditional probabilities of the features. All the 
parameters that are required to calculate the probability are obtained from the training set, 
using the relative frequencies in the set, and finding the maximum likelihood, and sometimes, 
numerical algorithms such as gradient descent, to maximize the likelihood function. Despite 
its apparent simplicity, a successful example of using the Bayes Classifier is junk email spam 
filtering [24]. 
 

 
Figure 4.2: Classification 

 

Linear Discriminants attempt to find the hyper planes that best separate different classes, as 
represented by their features in d-dimensional space. This is possible, if the features they 
represent can be linearly separated into classes. There are various methods to find the 
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parameters of the hyper planes, the most popular being the perceptron algorithm [25]. 
Successful applications of Linear Discriminants can be found in face recognition. 
 
Support Vector Machines (SVMs) are considered to offer state of the art classification results. 
SVMs belong to a more general class of linear classifiers, called maximal-margin classifiers. 
SVMs try to find the plane that maximizes the distance between the closest sample in each 
one of the classes and the separating hyper plane, thus, maximizing the margin. It is also 
possible, by application of the kernel trick [26], to transform the features via a nonlinear 
transformation and perform the classification linearly in the transformed space. This 
transformation, allows for better interclass separability in many cases. A simple example can 
be seen on Fig. 4.2. Successful examples of application of SVM to real world problems 
include Facial Expression classification [27], and optical character recognition (OCR) [28]. 

4.2 Unsupervised Learning 
Unsupervised learning, being at the other end of the scale, allows for learning useful structure 
without labeled training data/classes, optimization criterion, feedback signal, or any other 
information beyond the raw data and grouping principles. This descriptive technique is 
typically used for applications requiring clustering, hierarchical clustering (taxonomy 
creation), novelty detection (“meaningful outliers”) or trend detection (extrapolation). 
Anomaly detection is an example of a network application where unsupervised learning may 
be used. The objective of such approaches is to develop methods that can perform 
simultaneous unsupervised learning at all levels of abstraction to hide unimportant variation 
while exposing important variation  
 
One example of unsupervised learning is k-means clustering. K-means clustering attempts to 
find an optimal (in some sense) partition of the input space into k clusters. To find the 
clusters, a set of k-centers are defined and the distances of the samples to this center are 
calculated. The most usual distance measure is Euclidean distance. Then, different k centroids 
or centers of the clusters are iteratively tried until the distances between centroids and the 
samples reach a minimum [29]. Despite its simplicity, this algorithm has worked quite well in 
many situations. It has been successfully applied to speech recognition, genome data analysis 
and ecosystem data analysis among others. In Fig. 4.3, there is an idealized illustration of a 
cluster of different data classes. The actual shape of the spheres or hyper spheres depends on 
the distance measure used, either if its Euclidean or Mahalanobis distance, among many other 
possible distances. 
 

 
Figure 4.3: Cluster of different classes 
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There is a clear trade-off beyond these two techniques (to be seen as extremities of the 
machine learning technique spectrum). Indeed, unlabeled data are usually plentiful whereas 
labeling of a large set of examples is time-consuming (condition often verified in networking 
environments). Hence, labeled data are expensive. The trade-off consists in using semi-
supervised learning (also called partially-supervised techniques) using both labeled and 
unlabeled data together [9, 10]. The main idea behind this approach is to use only a small 
number of labeled examples for bootstrapping and make use of a large number of unlabeled 
examples for learning.  
 
One objective of the project is to investigate via experiments the applicability of semi-
supervised learning approaches to network problems in the area of traffic measurement (i) and 
the area of anomaly detection (network security) at the level of individual packets, traffic 
flows, protocol messages and their processing (ii ).   

1. Predicting the current state of a path based from past measurements (RTT, bandwidth, 
etc.) is, from a machine learning point of view, a particular regression problem for 
time series. Learning methods can be used here to induce a model from past 
observations and to predict the future state(s). The challenge will be to make these 
predictions robust from a limited amount of previously analyzed data in a semi-
supervised setting, a relatively new but growing framework in machine learning [9].  

2. Anomaly detection systems benefit from training on existing data (teacher learning) 
but also require some level of autonomy in learning, as the network will be subject to 
new types of attacks/anomalies. The objective is to develop new methods that perform 
simultaneous semi-supervised learning at different levels of abstraction (e.g., packet 
vs. flow) to hide unimportant variation while exposing important variation. It is 
believed that by performing anomaly detection at different levels the global anomaly 
detection can be made more robust by exploiting regularities at the multiple levels.  

4.3. On-Line Learning 
In off-line learning data is collected, possibly (manually) labeled, and then provided to the 
learning algorithm in a batch process. In off-line learning algorithms it is assumed that the 
time to search through the space of knowledge structures is not strongly limited. This allows 
for the learning system to learn the structure that minimizes the probability of faulty system 
outputs. The off-line learning mechanisms may be less applicable in dynamic networking 
environments where possibly a lot of data is generated at every time instance and where 
resources and thus also processing capabilities are fairly limited. There is thus a clear need to 
move to on-line learning mechanisms that are able to process real-time data streams in a real-
time fashion (no built-up of unprocessed data).   
  
As opposed to the problem mentioned in the paragraph above with respect to huge amounts of 
available data that require processing, there is another problem that will need to be addressed. 
This problem arises from the fact that training data about special events (e.g., anomaly 
detection) is fairly sparse because their occurrence is not frequent. The system will thus not be 
able to identify certain traffic patterns the first time they are encountered. A mistake-bounded 
criterion (how many mistakes does the system make before it learns to recognize the pattern?) 
will have to be used to evaluate different learning techniques.   
 
Research on on-line learning techniques will be of particular interest for applications that 
require adapting the model in a possibly changing environment (in particular, for path 
availability estimation and path performance monitoring). Simple regression models are often 
estimated via (regularized) least-square methods. Stochastic gradient descent techniques are 
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available for estimating their parameters on-line. On-line learning is still a difficult task 
however for more advanced regression methods. Most kernel methods for instance represent 
the data through a Gram matrix made of pair-wise similarities between individual data points 
(simple dot products in the linear case). Some methods explicitly deal with well-selected 
subsets of the data (e.g., [11]) but their objective is to reduce the computational complexity of 
the estimation algorithm not necessarily to avoid the explicit storage of past data.  

4.4. Distributed Learning 
While the majority of the machine learning problems is being addressed in a centralized 
fashion, this no longer holds for massively distributed environments such as networks where 
the shear amount of data being produces by sensors/detectors/etc. would not lead to scalable 
solutions. Hence, an additional point to be studied concerns distributed learning: the 
distribution between several learners, the so-called machine learning engines in the ECODE 
project. Distribution may concern the data to be analyzed and/or predicted.  
  
Again a networking example can be found in anomaly detection systems where cooperation 
between nodes is mandatory to be able to detect certain types of attacks and where local 
anomaly detectors may benefit from relevant traffic models learned elsewhere.   
  
Distribution may concern the data to be analyzed and/or predicted, but also and if needed, the 
induced regression models or some knowledge deduced from their internal representation. 
Whereas distribution at the data level does not prevent from using a standard learning 
algorithm (and can only helps this algorithm to build a model from more relevant 
information), the availability of general distributed learning algorithms is still an open 
research issue. 
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5. ECODE Architecture 

5.1. Architectural Outline 
The most notable use of learning paradigm applied to networking is the unified Knowledge 
Plane (KP) as proposed by Clark et al. [5]. The driving idea of the KP is to augment the 
network control system with a higher-level structure that addresses issues of ``knowing what 
is going on'' in the network. Its main goal is to build a new generation of network that can i) 
drive its own deployment and configuration ii ) diagnose its own problems iii ) make defensible 
decisions about how to resolve them. The KP, by sitting on top of the current control system, 
is also intended to break the boundaries between the control and management system of the 
Internet (current Internet management system is driven by weak coupling between its 
different administrative units). 
   
Architecturally, the KP, that embodies cognitive tools and learning, is a separate structure that 
creates, reconciles and maintains the many aspects of a high-level view, and then provides 
services and advices as needed to other network elements. The core foundation of the KP is its 
ability to integrate behavioral models and reasoning processes into a networked environment. 
Compared to the KP approach, we believe that a cognitive routing system should be driven by 
three fundamental principles. First, a cognitive routing system should be structured modularly 
instead of relying on a unified approach for functional but also practical development and 
deployment reasons. Second, the system should be segmented so that it relies on a relative 
view of the network environment (in particular, from the routing perspective), instead of 
requiring a global network view to operate, resulting in scaling and deployment issues.  
Finally, it should be built taking into account the inherent distributed properties and 
capabilities of the routing system (i.e., sizeability) instead of being constructed as a uniform 
and ubiquitous two-dimensional structure that does not account for the specialization of the 
routing functionality (e.g., intra-domain vs. inter-domain). 
 
We describe of the ECODE architecture at two-levels: the System Architecture level (see Sec. 
9.2.) and the Network Architecture level (see Sec. 9.3.). 

5.2. System Architecture 

5.2.1. Overview 
The proposed methodology relies on cross-fertilization between the networking and machine 
based techniques to form a cognitive routing system answering nowadays operational and 
tomorrow's Internet challenges. Indeed, these networking challenges are similar to the 
conditions traditionally encountered in classical machine learning problems. 
 
First, the events cannot be well characterized even when examples of such an event are 
available (the Nature). Second, the correlations and trends between events are hidden within 
large amounts of data that are associated to these events (the Relationship). Third, the 
conditions (Environment) are changing over time.  This is particularly the case for the routing 
environment but also the variability of traffic demands, expectations and behaviors. Fourth, 
the amount of available data is too large for handling by human intervention (the Quantity).  
Finally, new events are constantly detected/discovered (the Evolution). 
 
From this analogy, the main concept we develop is to extend existing IP networking 
equipment, i.e. routers, with a machine learning engine (as shown in Fig. 5.1) and refer to 
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them as cognitive routers. Based on advances in machine learning techniques including semi-
supervision, on-line, and distribution, the Machine Learning Engine (MLE) derives a number 
of observations from the data collected from the routing and/or forwarding engines and 
possibly from other MLEs. By processing these observations, the MLE learns rules resulting in 
local decisions (directed towards the local forwarding and routing engines). These decisions 
can also be distributed to other MLEs in case dissemination of the decision(s) beyond the local 
router is required. The distribution of the processing as well as the learned rules may depend 
on the peering relationship between cognitive routers. In particular, the boundary defined by 
autonomous systems may be a limiting factor to the distribution of such information. Hence, 
cognitive routers may be operated in one domain independently of the deployment level in 
adjacent autonomous systems without modifying their peering relationship. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: ECODE System Architecture Overview 

5.2.2. Data structures 
As depicted in the left-hand side of Fig.5.1, a standard router comprises a forwarding engine 
(as part of its forwarding plane) and a routing engine (as part of its control plane). The 
forwarding engine includes a packet processor and a Forwarding Information Base (FIB). 
The routing engine includes a routing information processor and Routing Information Base 
(RIB). As depicted in Fig. 5.1, the RIB stores the routes and (in some cases) the metrics 
associated with those routes to particular network destination prefixes. This information 
contains the topology of the network immediately around the router. The FIB is used to find 
the proper interface to which the input interface should send a packet to be transmitted by the 
router. The FIB is constructed based on the RIB and according to policies defined by the 
operator. It is optimized for fast lookup of destination addresses.  
 
The ECODE architecture introduces in addition to the forwarding, and routing engines (see 
right-hand side of Fig.5.1):  
 

• The Machine Learning Engine (MLE), part of the control plane, aims at processing by 
means of learning methods, the input from the network (obtained via forwarding and 
control components) to subsequently decide on forwarding and routing execution. The 
MLE provides the means to propagate the corresponding decisions to the routing and 
forwarding engines.  
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  The MLE comprises four different functional components: the Translator, the 

Representation, the Processing, and the Distribution (see Section 5.2.4).  
   
  As part of the MLE, the following data structures are introduced: 

o The Knowledge Information Base (KIB): stores learned models and (past) 
decisions. Both constitute the so-called prior knowledge. 

o The Observation Information Base (OIB) stores bounded sequences of 
observations that can be accessed by means of the Register (RL) or loaded (on-
demand) by the Processor. 

o The Learning Methods (LM) base: stores the learning algorithms  
 
• The Monitoring Engine (ME): part of the forwarding plane, it comprises a set of 

monitoring points that can be either passive of active. When passive, the monitoring 
point aims at capturing packets (for passive measures), and when active, it can 
additionally injects probes (for active measures). Once captured, packet data may be 
classified per source-destination pair, per destination prefix, per traffic class, etc. and 
metered to measure the bandwidth, delay, packet loss, etc. of classified traffic streams. 
Alternatively, captured data may be selected (filtered or sampled) before being 
classified. The ME parameters such as the sampling parameters (e.g. sampling rate), 
and filtering parameters are controlled by the MLE by means of the ME controller. The 
functional description of the ME is further detailed in Section 5.3. Resulting data is 
buffered the monitoring data register part of the reporting module (see also Fig.5.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: Data Structures and Interfaces between Forwarding/Routing/Monitoring and Machine 
Learning Engine 
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5.2.3. Interfaces 
The interaction between the various engines is performed through dedicated interfaces. We 
consider four distinct interfaces (see Fig.5.2): 

1. RF (for Routing – Forwarding): through this interface, the routing and forwarding 
engines can communicate with each other and exchange information if requires. 

2. CR (for Cognitive – Routing): through this interface, the MLE may retrieve data from 
the routing engine and communicate to the routing engine the decision it takes. 

3. CF (for Cognitive – Forwarding): similarly to the CR, the MLE may retrieve data from 
the forwarding engine and communicate to the forwarding engine the decision it takes. 

4. CM (for Cognitive - Monitoring): through this interface, the MLE may retrieve path 
performance information from the ME.  

 
Monitoring, routing, and/or forwarding engines provide raw and/or pre-processed data to the 
Machine Learning Engine (MLE) through the CM, CR, and CF interface, respectively. The 
reason for optional pre-processing is to prevent potential MLE processing overloading. Based 
on this data and machine learning methods as well as prior knowledge such as learned rules 
and/or decisions, the MLE takes decisions and sends them back to the routing, forwarding, and 
monitoring engines. Note that the learned methods are stored in a particular structure called 
the Learning Methods (LM) base. The so-called prior knowledge and learned models are 
stored in the Knowledge Information Base (KIB) used, in the ECODE architecture, to store 
prior knowledge such as learned models or decisions. The Observation Information Base 
(OIB) stores bounded sequences of observations that can be accessed by means of the 
Register (RL) or loaded (on-demand) by the Processing. 
 
Fig. 5.2 provides a representation of the interface between forwarding and routing engines and 
the Translator function of the MLE. The CM interface is here depicted for a single line card 
comprising a set of N interfaces/ports, n of them (n ≤ N) being equipped with a Monitoring 
Point (MP). Thus, a node may comprise multiple instances of the CM interface.   

5.2.4. Machine Learning Engine Components 
Fig. 5.2 provides a view of the elements composing the Machine Learning Engine (MLE). As 
illustrated, the MLE comprises four different functional (sub-)components: the Translator, the 
Representation, the Processing, and the Distribution. 
 

• The Translator comprises a syntax function that converts the data received from the 
Monitoring, Routing, and/or Forwarding engines into uniformly formatted data. 

 
• The Representation takes the formatted data (received from the Translator) and 

transforms it into various tagged observations describing states, events, or conditions. 
A "tag" can for instance include the "originating plane", the "type of information", the 
"time stamp/interval", etc. In other words, the Representation function provides inputs 
to the machine learning algorithms. A "tag" is assigned to these observations to 
selectively call adequate their processing by the processor. Indeed, from the training 
data set, the processor selects inductively a learning algorithm to derive the target 
function. In other words, the representation function acts as pre-processor that 
provides the actual input to the machine learning processing. The reason is to prevent 
overloading the processor with the large amount data that is received from the routing, 
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forwarding, and monitoring engines (even if the latter is making use of sampling, 
filtering, etc). 

 
• The Processor includes the Learner and the Performer (functions) and the associated 

registers. The Learner makes use of observations for training purposes and produces a 
learned hypothesis h defined as the approximation of the target function representing 
the prediction rule to be learned. The Performer uses unseen observations and 
determines if the hypothesis h is a good learned approximation of a target function and 
the complexity c(h). Taking into account the trade-off between underfit and overfit, 
once the learned hypothesis is sufficiently accurate over the test data set (test error), 
the learned rules can then be used to produce decisions. Decisions are taken by 
applying the learned rules to new incoming observations by combining the obtained 
decision with previously reached decisions as well as objectives (functional and 
performance) and constraints (both technical and non-technical). 

 
• Decisions and learned rules are then provided to the Distribution component that aims 

at disseminating them. This dissemination might be local (i.e., inside the router) or 
external (i.e., between various routers). If the dissemination is local, the decisions are 
sent to the Translator so that they are correctly formatted for the routing, forwarding, 
or monitoring engines. The Translator is also in charge of sending this formatted 
output to the routing, forwarding, monitoring engines through the dedicated interface 
(CR, CF, or CM). Learned rules are locally stored in the KIB. On the other hand, if the 
dissemination is external, the decisions and learned rules are sent to others Machine 
Learning Engines through the CC interface, as detailed in Section 5.4.2, and illustrated 
in Fig.5.6.  

5.3. Monitoring Engine 
The Monitoring Engine (ME) comprises set of monitoring points and an (optional) monitoring 
data pre-processor. Monitoring points (MP) can be either i) passive (passive MP) or ii) active 
(active MP). 
 
The ME could have been complemented with an (external) common monitoring information 
base. The advantage of the proposed architecture is to benefit from a single interface with the 
MLE. On the other hand, adding a monitoring information base requires an additional data 
structure and associated processing as well as increases the delay before reaching the 
Translator. Thus, this option does not seem viable in the context of the proposed architecture. 
A good compromise consists in distributing pre-processing (per set of MP). In this case, delays 
would be reduced (no intermediate storage outside of the MLE) and load on the translator 
would still be lowered (compared to the situation where all monitoring data reach the 
translator). The reporting block (depicted in Fig. 5.3) would comprise the monitoring data 
buffer. 

5.3.1. Passive Monitoring Points 
Passive monitoring points (passive MP) provide the following functions (see Fig.5.3): 
capturing, selection, classification, metering, and reporting. The selection function may either 
perform sampling or filtering of the captured packets. The capturing and the selection 
functions are driven by a controller that is in charge of receiving the decisions from the MLE 
and transpose them into configurations parameters, e.g., sampling rate and filtering patterns.  



FP7-ICT-2007-2 – ECODE : Experimental Cognitive Distributed Engine 

Deliverable D2.1    Page 20 of 70  

5.3.2. Active Monitoring Points 
Active monitoring points (active MP) are designed as Passive monitoring points with the 
addition of a prober. The prober injects probes on the "wire" (insertion of "monitoring" 
packets). The controller commands the setting of the prober parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Monitoring Point (MP) - Functional architecture 

5.4. Network Architecture 
Fig. 5.4 outlines a generic architecture of the network so as currently observed in the Internet 
topology: Tier structure.  
 

 
 

Figure 5.4: General architecture of the network 
 
The network is divided into Tier ISP: 

• Tier 1 ISPs refer to backbone providers. There are a dozen of large international and 
large national ISPs interconnected by multiple private peering points (i.e., shared 
cost). The Tier 1 ISPs provide transit service (i.e., no “upstream” provider).  Examples 
of Tier 1 ISPs are AT&T, Verizon, Sprint, or Level 3. 

• Tier 2 ISPs are regional or national ISPs. They are typically customer of Tier 1 ISPs 
(at least one, but often two) and provider of Tier 3 ISPs. They have shared cost links 
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with other Tier 2 ISPs. Examples of Tiers 2 ISPs are France Telecom, British 
Telecom, or Belgacom. 

• Tier 3 ISPs refers to stub ASes. They are smaller ISPs, corporate networks, or even 
content providers.  They are only customer of Tier 1 and Tier 2 ISPs.  They possibly 
have shared cost links with other Tier 3 ISPs   

5.4.1. Location 
Fig. 5.4 also illustrates the different types of routers: Access, Edge (or Border) and Internal 
(or Core) routers.  Access and Edge routers are located at the border of an ISP (R1, R2, R3, and 
R4 on Fig. 5.4), while Internal routers are located within the ISP (Ri, Rj, and Rk on Fig. 5.4).  
Only Access and Edge routers send/receive information from other ISPs. As already 
mentioned in Section 5.2., any standard router comprises a forwarding and a routing engine.  
Any of the three routers types being access, edge or internal routers can be equipped with a 
MLE as discussed in Section 5.2.  

5.4.2. Information Exchange and Distribution 
This sub-section describes how cognitive routers might cooperate with each other in order to 
exchange information. Some use cases might take benefit and others simply require exchange 
between cognitive routers. Distributed traffic anomaly detection is by definition relying on 
distributed input exchange between detecting routers within the same routing domain whereas 
profile-based accountability can be executed on a single access router or take benefit of 
collaboration among a set of access routers belonging to the same domain. 
 

 
Figure 5.5: Communication channels 

 
Fig. 5.5 represents the different communication channels that can be realized between 
cognitive routers (orange lines between blue hexagons). The topology of the communication 
channels can be either congruent (e.g., between R6 and R7) or non-congruent (between R1 and 
R3, or between R3 and R6) with the routing topology as depicted by the gray solid lines. Note 
also that the logical topology between cognitive routers does not need to be a full mesh as 
represented in Fig. 5.5.  Also, communication channels between cognitive routers do not need 
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to be permanent, i.e., they may be setup on demand depending on the distribution of the 
functionality. 
 
As depicted in Fig. 5.6, exchanges between routers equipped with a MLE are performed by 
means of a dedicated CC interface that is functionally subdivided into: 

1. CCr: this sub- interface defined between representation modules of peering cognitive 
routers is used to exchange input to the machine learning processing. 

2. CCp: this sub-interface between processing modules of peering cognitive routers is 
used to exchange during machine learning execution is used to exchange during 
processing (for e.g., co-training purposes). 

3. CCd: this sub-interface between distribution modules of peering cognitive routers is 
used to exchange learned rules and decisions. 

 
As stated before, the distribution of the processing as well as the learned rules and decisions 
but also input to the machine learning processing may depend on the peering relationship 
between cognitive routers. In particular, the boundary defined by AS may be a limiting factor 
to the distribution of such information that is strongly dependent on the peering or client-
server relationship between ASes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Exchange between routers equipped with a Machine Learning Engine (MLE) 
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6. Security and Monitoring 

6.1. Adaptive Traffic Sampling 

6.1.1. Use Case Description 
Our goal is to develop an autonomous system for network monitoring and traffic 
management. Starting from a measurement task like for example the calculation of the traffic 
matrix, the estimation of flow sizes and rates, the prediction of flow rate increase/decrease, or 
the detection of anomalies, the system will configure the sampling rates in network routers so 
as to optimize the accuracy while limiting the overhead (volume of collected traffic, packet 
processing and memory access in routers). The system will include modules to sample the 
network, collect the sampled data, analyze it, find the optimal sampling rates, and configure 
routers accordingly. 

 
Using the inferred information on traffic statistics, we will design algorithms for flow 
management (e.g., flow scheduling, flow blocking) inside routers that improve user and 
network performances.  

6.1.1.1. System's Input Information  
At first, the system uses no entry data except measurements carried out by routers, but we 
may envisage the exchange of information among routers to boost the convergence for the 
best measurement model and optimal router configuration. The measurements to be collected 
are for now of the type sampled packet traces and Netflow records coupled with routing and 
network topology information (e.g., routes followed by flows inside the network). The results 
of sampling, either at the packet level or the flow level, will serve as an input to traffic 
management.  

6.1.1.2. System's Output Information  
In a distributed approach, each node must provide the other nodes with traffic measurements 
and information on its routing tables. The nature of exchanged data depends on the network-
wide measurement task to be carried on. In a centralized approach, nodes send their 
measurements to a collector, where they are analyzed. The collector takes the decisions about 
which routers have to be involved in the monitoring and the amount of involvement (to be 
controlled by the sampling rate and the way sampling is done). 

 
For example, if we want to determine the greediest users in a given network, the collector 
starts from a configuration of monitors embedded in routers (e.g., a DAG card performing 
measurements or a Netflow tool), gathers sampled data from these monitors, and depending 
on these collected data, may increase the sampling rate on some paths of the network and 
decrease it on others. The objective is always to improve accuracy while limiting the 
overhead. 

6.1.1.3. Interactions between the Decision Engine and the Forwarding/Routing 
Engines 
Our aim is to build a standalone system that infers the status of the network and realizes some 
monitoring application like for example anomaly detection, flow characteristics estimation 
and flow management. Routing optimization is not the target but rather leverage routing / 
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forwarding information during the network state learning phase and for the configuration of 
monitors and flow management controllers. 
 
Note that the decision engine could be either centralized or decentralized, both situations are 
possible. In the centralized case, a collector must be deployed to collect information from 
network monitors deployed in routers. The collector uses then this information to infer the 
status of the network using machine learning techniques and to optimize the monitoring 
process. 
 
In the distributed case, network nodes exchange information among themselves to reach the 
optimal router configuration (from monitoring and flow management perspectives) with or 
without the help of a central unit. 

6.1.2. Interaction with Learning Module 

6.1.2.1. Machine Learning Technique(s)  
The system will sample the network, collect the sampled data, analyze it, find the optimal 
sampling rates, and configure routers accordingly for both monitoring and flow management 
purposes. 
 
During this procedure we use unsupervised machine learning techniques to estimate network 
and traffic state (e.g., flow size and rate estimations). The focus will be on techniques like the 
maximum likelihood, the Kalman filtering, and the EM (Expectation Maximization) method. 
The estimated state of the network and of its traffic will then be used to optimize the sampling 
rates in network routers so as to increase the measurement accuracy while limiting the 
overhead (e.g., volume of collected traffic, packet processing and memory access inside 
routers). 
 
Moreover, to take optimal decisions for the purpose of traffic management (e.g., flow 
scheduling), one needs to combine flow properties’ estimation and control. To perform the 
joint estimation and control online, one can use reinforcement learning techniques such as 
Markov Decision Processes, Markov Decision Processes with Partial Observations and 
Gittins index. 
 
Note that it is important for our system to have an understandable model that explains the 
nature of the monitoring application to be run and the assumptions on the underlying network 
(topology, routing, etc). The procedure of learning network status and the optimization of 
both monitoring and traffic management depend strongly on the nature of the application and 
the model assumptions.  

6.1.2.2. The Learning Stage 
The learning stage will take place where the decision function needs to be adapted 
dynamically to change in the system. We want our system to adapt to any new monitoring 
application and to any change in network conditions. The system operates then in iterations 
and during each iteration, there is a collection of sampled information from the network (raw 
packet traces or NetFlow records), the application of machine learning techniques to estimate 
network and traffic state, and the optimization of the monitoring configuration. Jointly, we 
keep evaluating the accuracy of the estimation, and when it is judged acceptable, network 
management decisions could be safely taken.  



FP7-ICT-2007-2 – ECODE : Experimental Cognitive Distributed Engine 

Deliverable D2.1    Page 25 of 70  

6.1.2.3. Inputs Variables to the Machine Learning Module 
Our problem is unsupervised. However, we use as input parameters constraints on the volume 
of sampled data and on the capacity of routers to perform monitoring (e.g., upper limit on the 
sampling rate). 
 
Then and during the execution of the machine learning procedure, we use additional inputs 
like the previous estimation of network and traffic states and the corresponding monitoring 
and control configuration. These additional inputs will serve to find a better configuration of 
monitors and controllers (e.g., better sampling rate, better handling of delay and jitter). The 
new configuration will be used to carry out new measurements, which will be used to find a 
better estimation of network traffic state, and so on. 
 
Note also that the inputs of the machine learning module are time varying. Indeed, our system 
uses sampled information on network traffic and network topology and routing to optimally 
tune routers. This information is variable by nature due to network and traffic dynamics, and 
so the system will adapt by continuously collecting data and changing the monitoring and 
flow management configuration. Note that the change in the configuration can come from 
modifying the monitoring application to realize, the targeted accuracy, the system parameters 
and capacity, or a change in the routing. 

6.1.2.4. Outputs of the Prediction Stage 
The machine learning module in our system is intended to provide an estimation of network 
and traffic status. This estimation is afterwards used to find a better configuration of monitors 
and controllers that reduces measurement errors and improve the management of flows inside 
routers. For instance, our system can optimize the monitoring to carry out the following 
measurements: 

• The number of packets sent by a given AS (autonomous system). 
• The greediest users. 
• The number of packets per flow. 
• Detection of anomalies. 

6.1.2.5. Learning Phase Speed 
The duration of the learning phase is a compromise between adaptation to network dynamics, 
overhead and accuracy. The longer we collect sampled data to learn the more the accuracy 
and the better the decisions we take, but this requires that the system does not change or at 
least that our model for the system tracks well its variability. One can boost the learning by 
collecting more samples; however this will incur more overhead. These tradeoffs are to be 
carefully studied and analyzed. They strongly depend on the monitoring and management 
application and the characteristics of the sampled population. 

6.1.2.6. Description of Training Samples 
The process of learning is unsupervised. So, at first the system uses no entry data (no training 
phase). The system proceeds in iterations to converge and at the same time to react to any 
change in network conditions. At each iteration, we sample the network and we gather 
sampled data from monitors deployed in network nodes. Depending on these collected data 
we estimate network status, and we configure monitors so as to optimize accuracy and limit 
resources utilization. Consider the example of finding the greediest users. As a first step, the 
system uses the same sampling rate in all monitors, and then the information is collected and 
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analyzed to determine estimates on the traffic of the greediest users. Suppose that these users 
take the edges [R1R2] and [R3R6], as illustrated on Fig. 6.1. 
 

 
Figure 6.1: Testbed 

 
In a second step, the system increases the sampling rate in routers R1 and R3 to increase the 
accuracy of the flow size estimation of the greediest users while reducing the sampling rate in 
the other monitors to reduce resource utilization. The optimization should take into account 
the error introduced by the sampling and the routes taken by flows inside the network (there 
might be the possibility to monitor a flow at different routers). 
 

 
Figure 6.2: Testbed 

 
Note that one can choose to reduce the sampling rate at the other monitors instead of putting 
them OFF to keep getting an idea on the traffic in the other parts of the network. This way the 
system can detect any changes in network status such as the emergence of a new greedy user. 
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6.2. Global/Active Monitoring 

6.2.1. Use Case Description 
Having measurements or an accurate estimation of performances on network links or on end-
to-end paths is of high interest for many functions in networking as admission control, load 
balancing, (QoS-) routing, congestion control, etc. This research area has been investigated 
for more than a decade and lead to two different approaches: active and passive monitoring 
techniques. 

6.2.1.1. Passive and active measurements capabilities and issues 
Passive monitoring tools are certainly the most appropriate tools for this purpose because of 
their higher accuracy (active measurement tools most of the time try to estimate performance 
parameter values based on effectively measured ones). But they are not always available 
when users need such information. Even carriers or ISPs who manage their own domain or 
autonomous system and can access any information they need about their own network state, 
can miss similar information from other carriers or ISP networks they are connected to. As a 
consequence, tools for estimating performance parameters such as delay, available bandwidth 
or loss rate on an end-to-end path, are usually based on active measurement techniques, which 
are said to be user oriented, as opposed to passive measurements, which are carrier or ISP 
oriented. Active measurement tools can provide a solution for having an easy access to such 
network feature estimations, and this can be used for any network structure and technology. 
Many tools for estimating available bandwidth have appeared in the recent years such as 
Abing, Spruce, Pathload, IGI-PTR, Pathchirp, etc. Ping or Traceroute are quite famous and 
popular tools for estimating end-to-end delay and loss rate [57, 58, 59]. Tools based on active 
measurements of the available bandwidth, for example, only allow estimates of this 
parameter, while passive monitoring tools can measure it in a very accurate way. Despite this 
limitation, and because of their wider availability, active monitoring techniques for measuring 
end-to-end path performances are of high interest either for measuring some delay related 
parameters, either for doing measurements on an end to end basis, even on several ASes. 

It is however important to remember that active measurements consist in generating probe 
traffic in the network, and then observing the impact of network components and protocols on 
traffic: loss rate, delays, RTT, etc. Therefore, as active measurement tools generate traffic in 
the network, one of their major drawbacks is related to the disturbance introduced by the 
probe traffic, which can make the network QoS change, and thus provide erroneous measures. 
Sometimes, active probing traffic can be interpreted as denial of service attacks, scanning, etc. 
Probe traffic is then discarded, and its source can be blacklisted. Intrusiveness of probe traffic 
is a side effect that active measurement tools must take into account. Many studies address 
this probe traffic intrusiveness issue, by trying to minimize the number of sent packets as well 
as their impact on network QoS. In addition, if an active measurement tool generates only a 
few packets, it would certainly provide estimation results in a very short time, which is an 
important performance parameter in the Internet, whose traffic is very versatile. These two 
issues, together with the accuracy of estimates for non-directly measurable performance 
parameters, are the challenging limitations to overcome. 

6.2.1.2. Global Monitoring System Components 
Global monitoring aims at providing an accurate view on the network performance levels on 
all links. It relies on both passive and active monitoring tools, but also a reporting mechanism 
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for broadcasting the measurements results, and possibly their analysis to where they are 
required. The global monitoring system relies on local measurement points (MP). All MPs are 
defined in order to integrate several traffic capturing or active measurement tools. They also 
integrate all needed ECODE modules. Last, they integrate reporting capabilities for 
exchanging traffic traces, measurement time series or analysis results for online distributed 
decision making. The basic functional components of the monitoring and measurement 
system are depicted on figure below. 
 

 
Figure 6.3: Basic functional architecture of the global monitoring system 

Note that the functional architecture is quite generic and open. It can integrate many 
capturing, measurement, and conversion tools, as well as the ECODE modules to be 
integrating as part of the traffic and measurement processing part. 

6.2.1.2.1. Local Passive Monitoring 
Local passive monitoring uses a hardware or software tool for capturing traffic. The resulting 
trace can be a flow or packet trace. In our case, we more specifically consider a packet trace, 
i.e., provides a trace of each packet (or at least its IP and TCP headers) together with an 
accurate timestamp. It can also be sampled for limiting the amount of resulting data. The 
generic format of such packet trace exchange between the passive monitoring and traffic and 
measurement processing modules is depicted on figure below. 

 

Figure 6.4: Packet Trace Format 
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6.2.1.2.2. Active Monitoring 
Active monitoring uses a hardware or software tool to send packet probes on the network. 
These packet probes are supposed to get an echo or to be followed on its path as a common 
flow for all MPs. RTT, end-to-end delays, hop-by-hop delays and PLR are computed on the 
basis of observation on sent, observed and received packets. UDP, TCP, IP or ICMP packets 
can be used. Time stamping is a significant issue when we are measuring delays which 
require considering timestamps provided by different clocks on different machines. 
Technically, the most accurate solution for having well synchronized clocks is to use GPS 
antenna and the PPS (Pulse Per Second) signals coming from the reference atomic clocks. As 
for passive monitoring, the global monitoring system is able to handle several different active 
monitoring tools which can provide the necessary information for ECODE modules. 

6.2.1.2.3. Distributed Decision in Active Monitoring 
The active measurement of metrics is impacted by the topology of the AS from which 
measurements are performed. Indeed, the closer from the target, the more accurate the results. 
We are also more exposed to the possibility of having asymmetric routes and network 
changing conditions. Then, depending on the target machine to probe, it is interesting to select 
the best probe source inside our AS. We can imagine that the selection of such a source probe 
machine could be a decentralized decision among all the nodes of the AS. For applying the 
related graph theory algorithm, we don’t really think that machine learning procedures would 
be required as we are supposed to know the topology of the AS we are managing. 

6.2.1.2.4. Reporting Protocol 
In general, monitoring tools based on passive measurement techniques and running on 
dedicated routers or any other kind of device in the network are then able to obtain 
information from a given local point of view. The problem then consists in obtaining a global 
view of the traffic and the network state. How to advertise the local measurements in the 
whole network then becomes a question of first importance. Since so far, the number of 
studies realized in this specific research area is limited. Two generic approaches can be used 
for obtaining reports from local measurement and monitoring tools: 

The polling technique consists in asking periodically local measurement tools about their last 
measurements. Of course, such requests have to be issued periodically. And this is highly 
inefficient because many unnecessary queries are issued. 

The reactive monitoring is the opposite approach compared to polling. It consists for the local 
measurement tools to send an advertisement when a change occurs. This can be seen as an 
event driven approach. 

The problem with these two approaches is that they generate excessive extra traffic when used 
in large networks (and this is especially true for the polling technique). In a large-scale 
network, a global monitoring system should be lightweight, scalable and fast (near-real-time), 
i.e., advertising up-to-date information. Nowadays, most proposals rely on the reactive 
monitoring approach. Looking at the literature, it also appears that most research now 
addresses the scalability issue. Nevertheless, it does not consider the reactivity level of the 
reporting system. All improvements of scalability are made at the expense of reactivity. The 
resulting reporting systems that introduces several seconds of delay between the detection of 
an event and reporting are not fast enough for solving network issues as congestion control or 
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intrusion detection. At the opposite, some systems propose a reactive monitoring approach 
that considers the reactivity level at the expenses of an increase of the advertisement/reporting 
traffic. To our knowledge, no work has been done to achieve both reactive and scalable 
monitoring in real time. These are two challenging issues to be solved. 

For this purpose, there will be a subscribe/unsubscribe procedure between MPs. If one MP 
needs the information provided by a second one, then the first will subscribe to the second 
(similarly as the association between BGP routers) and then will get the information he 
requests to the MP. 

6.2.2. Interaction with Learning Module 
No learning stage or module could be of profit to the global monitoring system. However, the 
global monitoring system, thanks to its capability of providing path performance 
measurements, is a key component for the routing system which has to select the best path for 
forwarding packets. 
 
The global monitoring module can be considered in Fig. 5.3, as a part of the Forwarding 
Engine. In fact, this module will be able to gather raw data from its own hardware but also 
from other MPs through the distributed reporting system. 

6.3. Anomalies Detection 
Network traffic anomalies can seriously impact or disrupt the normal operation of networks. It 
is then vital that network administrators quickly do their identification and mitigation. A 
specific type, volume anomalies, is responsible for unusual modifications on network traffic 
volume characteristics (identified by the # of packets, # of bytes or # of new flows) or on its 
distribution (identified by its application share or its distribution in address or geographical 
space). These anomalies can be caused by a myriad of events: from physical or technical 
network problems (e.g., outages, routers misconfiguration), to intentionally malicious 
behavior (e.g., denial-of-service attacks, worms related traffic), to abrupt changes caused by 
legitimate traffic (e.g., flash crowds, alpha flows). 

Anomalies created by denial-of-service attacks are particularly important because these 
attacks are extremely common and disruptive to normal traffic characteristics. Even low 
intensity flooding DoS attacks directly impact the LRD (Long Range Dependence) of network 
traffic; hence, causing a degradation of the network's QoS [60, 61, 62]. 

Anomaly detection is achieved by comparing a set of traffic features with a prediction 
following a normal behavior model. The main issues in anomaly detection in networks are 
three folds: 

• Issues relative to feature observations: different anomalies need different features to 
be observed. Frequently the observation points are distributed over the network. This 
raises the issue of how to extract features from these distributed measurements and to 
use them for consistent anomaly detection in the network. An important role of 
machine intelligence in this context is to decide which metrics should be observed and 
at what granularity level to enable a reliable anomaly detection and classification. 
Indeed a simple solution consists to transfer all observation to a central point that will 
thereafter decide the relevance of each observation to anomaly detection tasks. 
However this solution is very costly (in term of used bandwidth) and can be 
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ineffective as sometime local decisions made on more complete observations are more 
relevant that centralized decision made on aggregated one. 

• Issues relative to model calibration: The second issue is relative to the choice of 
structure of the normal behavior model. The model should be expressive enough to 
describe the complexity of the network traffic behavior and at the same being simple 
to enable easy calibration. Indeed the main goal of machine learning in the context of 
anomaly detection is to calibrate this model of normal behavior. Normal behavior 
model might be defined on a single observation or on a vector of observations. In the 
latter case, the calibration might occur in a centralized way (when all the observations 
are available at a central point) or in a distributed way (when observation are only 
available locally and the monitoring nodes in the network exchange aggregated 
information to generate a normal behavior model). The distributed nature of networks 
enforces us to consider the centralized and the decentralized machine learning 
problem. 

• Issues relative to detecting and recognizing anomalies: a third challenge is coming 
from the last step of anomaly detection that consists of deciding if the deviation 
between a prediction made by the predictive normal model and the observations is 
incompatible with a normal behavior or not. This last step is difficult as Internet traffic 
is characterized by self-similarity, (multi-)fractality and long range dependence [60, 
61, 62, 63]. Therefore it is hard to relate large variation of observations to anomalies. 
This makes the identification and mitigation of anomalies a very challenging task. 

Despite these difficulties, constant progress has been made in network traffic anomaly 
detection. Methods have been created to detect anomalies in single-links and network-wide 
data, and techniques have been used to cope with the high dimensionality of network traffic 
data. Algorithms for network traffic anomaly detection have evolved from only being able to 
signal an anomaly in time to providing information about the actual flows that cause the 
anomaly. 
 
This information is very valuable to network administrators that need to manually verify and 
mitigate potential anomalies, but is still not enough. Because of the characteristics of network 
traffic and the frequency of anomalies, it's not feasible for network administrators to manually 
analyze all anomalies detected by state-of-the-art detection algorithms. Network operators 
need more information than just the anomalous flows to be able to efficiently prioritize their 
time between anomalies. Automated classification of anomalies is the next step to give 
network administrators this information. 
 
Integrating machine intelligence into the routing engine could be very valuable in this context 
as it will leverage the manual task of administrators and give them an automatic tool for 
detecting and acting on the source of anomalies with a low operational cost, low false alarm 
rate and very high detection rates. 
 
We will here describe four use cases that could be applied to the intelligent machine that the 
project is going to develop. 
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6.3.1. Use Case Description 

6.3.1.1. Anomaly Classification: The Required Next Step in Anomaly Detection  
Although there has been some effort to characterize network traffic anomalies, automated 
classification has not received much attention (a notable exception is the work by Lakhina et 
al. [64]). Automated classification intends to add meaningful information to the alert of a 
detected anomaly. Besides the basic information of an anomaly's volume and traffic features, 
an algorithm for automated classification should be able to make complex derivations over 
the anomaly's characteristics. Ideally, the computed information can then be used to define the 
type of the anomaly or to at least help characterize the underlying cause. 

6.3.1.2. Active Monitoring Applied to Anomaly Detection 
Most of previous work on attack detection has been concentrating on monitoring traffic using 
passive measurement techniques. This part of this use case is to design an alternative 
approach based on active measurements, the objective being to make possible the real-time 
detection of DoS flooding attacks, without intrusive probing. It relies on the assumption that 
delays will be impacted in case of attack. The advantage of active measurement is its user-
oriented nature which allows anybody to cope with DoS attack detection (whereas it is usually 
devoted to network administrators). 

The end-to-end approach of active measurements also makes possible to detect attacks 
anywhere in the Internet from any source. This represents a great advantage in our situation 
since it allows us to potentially detect anomalies inside other ASes without an actual 
exchange of information with these ASes (e.g., if these ASes do not share strategic 
information). Active measurements would then significantly ease the design of a global attack 
detection system for the Internet. 

Active measurements are very popular in the Internet for measuring delays, loss rates, 
inferring network topologies, etc. They are also used for estimating available bandwidth (see 
tools as Abing, Spruce, Pathload, IGI-PTR, Pathchirp, etc [57, 58, 59]). Our proposed method 
then relies on analyzing time series distributions of measured ICMP request/echo delays. Its 
originality relies on how these time series distributions are computed in order to exhibit 
anomalous values corresponding to DoS flooding attacks and classifying them. For this 
purpose, and taking advantage of previous work on anomaly passive detection which 
demonstrated the benefits of statistics or entropy analysis, our detection method also 
computes the entropy from distributions of RTT time series. 

However, first results when working on the entropy function or Kullback-Leibler distance 
only were not convincing in active measurements, because of a high rate of false positives. 
The methodology will be extended by the use of the Hausdorff distance on distributions of 
time series, an index of dissimilarity (whereas entropy is a index of similarity) to reduce this 
level of false positives. Hausdorff distance was used many times in image pattern recognition. 
The combination of all these distances/indexes of similarity / dissimilarity allows us to reduce 
the rate of false positives and false negatives. Classification concerning active measurements 
remains however an open problem. The identification of ICMP-SEQ flood seems to be 
possible but others types of anomalies still seem to be unidentifiable [65]. 
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The performance of the system is also a great criterion to evaluate its efficiency. This 
performance can be evaluated in two terms: reactivity and processing resources used. The 
way time series distributions are built/used allows us to tune these performance indexes. In 
fact each time series distribution is built with two parameters: the size of the window and the 
interval between each window or the overlapping between two consecutive windows. In fact, 
the greater the size of the window is, the shorter the time between each window or the bigger 
the overlapping are, the more accurate the system is, but at the expense of the processing 
resources used. 

6.3.1.3. Two dimensions ADS (Anomaly Detection System) 

6.3.1.3.1. Single Point ADS  
This first step aims at designing an Anomaly Detection System (ADS) able to detect and 
classify traffic anomalies on a single link. Because of traffic variability and the low intensity 
of anomalies components, it is not easy to detect accurately anomalies, i.e. with a limited 
amount of false positives and false negatives. In addition, the recent work which relies on 
strong statistical or signal processing techniques does not provide a satisfactory solution. 
First, such solutions are not perfectly accurate: Even if they significantly reduce the number 
of false positive and false negative, they cannot guarantee that some attacks will not remain 
undetected, whereas some normal variations of the traffic will not get detected as anomalies. 
Second, if an anomaly is detected in the spectral plane or based on the entropy function, it is 
very difficult to then identify the anomaly characteristics to give network operator 
understandable information to cope with the anomaly. We then propose to separate the 
detection and classification functions. We then recommend to design an as simple as possible 
detection algorithm based on several volume parameters of traffic – for instance a simple one 
based on deltoids. The key contribution is then the design of a new algorithm for automated 
classification of network traffic anomalies. We plan to demonstrate how the information 
obtained by further analyzing the identified anomalous flows can be abstracted as anomaly 
attributes. These attributes can then be used in a signature-based classification module to 
reliably characterize different types of anomalies. By using meaningful and well-explained 
attributes, network operators can adapt the classification rules to their needs. We will define 
several of these attributes and show how different types of anomalies could potentially be 
characterized using them. We will show the expressiveness of this approach to reliably 
classify different types of anomalies (e.g., DDoS, network scans, and attack responses) and 
how it gives network operators the flexibility needed so they can use network traffic 
anomalies detection algorithms in a more efficient manner. The classification algorithm is 
then also devoted to false alarms reduction, i.e. it can classify the traffic which leads the 
simple detection algorithm to raise an alarm as normal, and thus stopping the delivery of a 
false alarm to the operator. In fact, the ultimate goal of the classification algorithm aims at 
determining the intension behind any anomaly. 

6.3.1.3.2. Distributed Collaborative ADS 
Network-wide anomaly detection methods developed up to now consisted of transferring a set 
of metrics to a central point where these metrics where compared to their expected values and 
divergence were detected. In these settings the operation of an anomaly detector could be 
divided into two related but different tasks: 

• Model identification:  this step is essentially of machine learning nature. In this step a 
relevant dynamical mathematical model of the normal behavior of traffic is extracted 
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by learning from measurements of network parameters during anomaly-less periods. 
The aim of this model is to predict the behavior of the traffic in either time or 
frequency domain without going precisely into the details of what is actually 
happening inside the network. This approximation results in a level of acceptable error 
in the precision of the model prediction. This error should be an independent and zero 
mean random variable, as any subsisting bias or dependence in the prediction error 
would mean that some predictive elements  still subsist that could be exploited. The 
level of acceptable error is characterized by the model identification step. Different 
approaches have been developed for this step. Indeed the model identification step is 
subject to a complexity/accuracy trade-off, i.e. attaining higher accuracy could be 
done at the cost of higher complexity. One should also be careful about over-learning 
that results in the model having poor performance outside the measurement used for 
calibrating it. For this reason, as a rule of thumb the acceptable prediction error is 
usually overestimated in a conservative way to enable the use of less complex model 
that are still able to have good performance outside their learning sets. 

• Filtering:  the normal behavior model developed in the first step is used in this step to 
remove from observation what could be predicted using the previous model. The 
residue of this filtering is called the “innovation process” and represents the part of the 
observation that could not be predicted. This step is a classical signal-processing step. 
When the observed metrics are compatible with a linear Gaussian process assumption 
the optimal filter for implementing this filtering step is the Kalman filter. 
Nevertheless, because of its feedback structure the Kalman filter is highly robust to 
deviation from linearity and gaussianity. However, under more general hypothesis as 
non-linearity Extended Kalman Filter (EKF) could be used and a particle filter can 
deal with highly non-Gaussian measurements. This means that whenever the model 
identification results in a good predictive model, the filtering step become 
straightforward. 

• Decision step: the last step of an anomaly detector is the decision step. In this step, the 
innovation process derived previously is compared with the level of acceptable 
prediction error obtained in first step through a statistical test. An anomaly is detected 
if this comparison leads to the decision that the observed innovation process is 
incompatible with an acceptable level of prediction error. If the modeling and filtering 
steps are done correctly one can expect to obtain at the decision step an independent 
and Gaussian process and to have to apply a simple hypothesis test, where we have to 
decide if an observed value of the innovation process resulting from the filtering step 
is compatible with the hypothesis of having been generated following a given 
distribution (resulting from the acceptable level of prediction error coming from the 
modeling step). Because of the inherent probable error in this hypothesis test, any 
anomaly detection can be characterized by a Receiver Operation Characteristic Curve 
(ROC curve) showing the trade-off between the risks of not-detecting an occurring 
anomaly vs. the likelihood that a detected anomaly has not happened in the real world. 
Because of the approximations done to implement the modeling and filtering steps 
with an acceptable complexity, very frequently the decision step have to deal with 
innovation processes that are not precisely independent and Gaussian process. This 
results in ROC curves that are below the optimal ROC curves expected when 
everything is perfectly following the theory. Nonetheless, that is in fine the ROC curve 
that could evaluate and compare the quality of different anomaly detector based on 
different modeling, filtering and decision structures. 

 



FP7-ICT-2007-2 – ECODE : Experimental Cognitive Distributed Engine 

Deliverable D2.1    Page 35 of 70  

Of the three above steps, the first step is essentially of machine learning nature; the two last 
steps are of statistical signal processing nature. 
 
Classically, the three above steps are done in a central point where all the relevant 
measurements are transported. Whenever the problem of centralized anomaly detection is a 
complex enough problem, there have been a good number of researches that have been done 
on this topic. One can divide these researches in two classes: parametric and non-parametric.  
 
The parametric approaches use a given model structure to capture the correlation existing in 
the observed measurements. This correlation is indeed used to predict the future value of 
observed metrics. This is this correlation captured in the predictive model that is filtered in the 
filtering step. Maximum Likelihood estimation of Dynamical Linear Systems and Principal 
Component Analysis (PCA) based modeling are noteworthy examples of parametric 
approaches that have been applied up to now to centralized anomaly detection.  
 
However, non-parametric approaches follow a different path. In these approaches, we first 
apply to the data a generic and agnostic un-correlating transform that results in an 
uncorrelated signal that will retain the properties of the initial signal not anymore in its 
correlation structure (that has been wiped out by the transform) but rather in its distribution 
that could be used in the decision step. Because of the un-correlating transform, the predictive 
model now consists simply of a distribution of transformed observation that should be 
inferred by machine learning; the filtering step is not anymore needed and the decision step 
consists of checking if a transformed observed value is compatible with a given distribution. 
One example of un-correlating function is random linear projection that takes a set of 
observations and maps it into a random space using a linear projection with random 
coefficient. Because of the random nature of the projection, thanks to central limit theorem if 
the number of element used in the linear projection is large enough, the random linear 
projection results in a jointly Gaussian and independent random vector with concentration 
around its mean values. These mean values are the distribution that will be characteristic of 
the normal behavior. Although the non-parametric approaches seem simpler as they do not 
need a complex model calibration, they have specific complexity related to the choice of the 
number of observation to mix to obtain convergence of the random projections as well as the 
robust estimation of the density.  
 
Out of these two approaches, the parametric approach have been the more investigated in the 
recent years, however recently the non-parametric approaches have been proposed and have 
resulted in interesting properties. 
 
The more challenging problem we want in particular to investigate in the context of ECODE 
project is how to perform anomaly detection in a distributed way. Indeed, in a real network 
source of observation are distributed and one would like to be able to detect anomalies at the 
observation point rather than delegate the detection to a distant central point. One obvious 
way consists of assuming the distributed problem as several independent instances of 
centralized anomaly detection apply only on data observed at this point. However, this 
simplistic approach misses the correlation between measurement points that could be the only 
vantage point for distributed anomalies. This means that all the three above steps have to be 
done in a decentralized way if one wants to benefit from the full correlation structure. 
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As for centralized approaches, parametric and non-parametric approaches can be applied to 
the distributed problem. As described earlier, parametric approaches are heavily based on 
signal processing techniques, and extending them to distributed case becomes an instance of 
general distributed signal processing problems. The area of distributed signal processing has 
attracted during the past years a lot of interests. The main problem in distributed signal 
processing consists of mapping a signal-processing task over a set of distributed processors 
that will cooperate to achieve the needed task. Some recent researches have targeted 
implementation of distributed Karhunen-Loeve transform (that is the basis of PCA based 
approaches), as well as distributed Kalman filtering. Transferring these researches into the 
context of distributed anomaly detection in networks and implementing them on the ECODE 
platform is one of the main goals of our research in this project. 
 
Non-Parametric approaches can also be extended to distributed anomaly detection. Recent 
researches have shown the interest of a generic technique coming from multi-user information 
theory and named "Slepian-Wolf Coding". This technique consists of exchanging random 
projections (sketches) between measurement points. These random projections act as side 
information that are used to build an overall model enabling the local decision about a global 
anomaly occurring in the whole network. Our aim here is to investigate the relevance of this 
approach to distributed anomaly detection. 

6.3.2. Interaction with Learning Module 

6.3.2.1. Distributed Anomaly Detection 
• Learning Stage: Learning stage takes place whenever a recalibration of the normal 

behaviour model is needed. This happen normally at the begin of the activity as well 
as whenever a significant change has happened in the network (for example addition 
of a new customer that generate a high enough traffic to change its profile) or 
whenever a significant divergence is observed between actual network behavior an 
previous model. 

• Machine learning technique: We expect to use parametric as well as non-parametric 
techniques during the project. Parametric methods need an unsupervised model 
calibration phase that can use several techniques as the EM (Expectation 
Maximization) or the MCMC (Monte Carlo Markov Chain) to estimate a maximum 
likelihood estimate of model parameters. Another approach is the Karhunen-Loeve 
transform (or its discrete counterpart the PCA). The filtering phase will use mainly 
Kalman filtering techniques. Decision phase is not of machine learning nature.  Non-
parametric techniques are mainly density estimation approaches over random mosaic. 
The decision phase uses statistical tests based on Kullback-Leibner distance. 

• Inputs variables to the machine learning module: In the case of the distributed 
anomaly detection system, we consider that the inputs variables to the machine 
learning module consist on the local observations and the random projections coming 
from other nodes. Indeed, these inputs consist of histograms obtained over random 
projection of observation in other nodes. These inputs are finite length vectors of 
integers. Note also that inputs are time varying. Inputs are in fact time series. Time is 
an essential parameter for detection and classification algorithms. 

• Outputs of the prediction stage: In the most general setting we expect the system to 
provide as an output the likelihood that an anomaly has been detected and eventually 
information about the source of this anomaly. However we should add to this 



FP7-ICT-2007-2 – ECODE : Experimental Cognitive Distributed Engine 

Deliverable D2.1    Page 37 of 70  

information forwarded to other node in order to help them to build global model of the 
network (for example random projection of local observation forwarded to neighbors). 

• Learning phase speed: The learning phase speed depends on the parametric, non-
parametric nature of the technique used. One can expect that parametric techniques 
will have a larger learning phase as they need to calibrate a model. We have carefully 
to evaluate this speed to ensure that an online operation is feasible. 

• Interaction with the routing/forwarding system: At the first stage, we are mainly 
interested about anomaly detection and not about anomaly mitigation. Indeed, this is 
this last step that will have to interact with the Forwarding/Routing Engine. We will 
deal with this interaction in later stage. 

6.3.2.2. Traffic anomalies detection 
• Learning Stage: There are two learning processes in the ADS: a process for learning 

about anomaly signatures, and a process for learning about current traffic 
characteristics or alarm events produced by single point ADS. Defining anomaly 
signatures is a long process which requires strong analysis of several examples of the 
same types of anomalies. As the objective is to determine the human intension behind 
an anomaly, it seems impossible to make it automatically. Therefore, the definition of 
the anomalies signatures will be made manually. The anomaly signatures database can 
then be enriched anytime a new anomaly is discovered and fully analyzed and 
characterized. For the single point detection algorithm based on deltoids, it is required 
to learn about a simple traffic characteristic: the standard deviation on deltoids time 
series (difference between inter-arrival times of consecutive packets). This means that 
the system will have to compute this statistical value for a given time before being 
able to detect anomalies. 

• Inputs variables to the machine learning module: The single point ADS uses as 
input the output of a passive monitoring system which provides a full packet trace, i.e. 
a file or stream containing a trace for all packets with at least for each packet full IP 
and TCP headers. This packet trace can be at the ERF format (the one of the DAG 
cards [66]) or any other (as the PCAP format of Wireshark for instance). Conversions 
between different formats should be easy. For avoiding waste of time in conversion, it 
would be better to use as inputs for the ADS the packet trace format of the used 
passive monitoring equipment. For the distributed collaborative ADS, inputs are 
coming from all other ADS involved in the collaboration. At the stage of the design, it 
is impossible to provide a complete description of such inputs. Anyway, we can 
imagine that such inputs (ADS outputs) are alarms. Alarms would certainly contain: 

o The type of anomaly detected (based on the classification process results) 
o A confidence level of the local detection and classification algorithms 
o A description of the anomaly characteristics which will depends on the 

anomaly type. It would however certainly contain source and destination 
addresses, source and destination ports, anomaly intensity, etc. 

Note that inputs are time varying. Inputs are in fact time series. Time is an essential 
parameter for detection and classification algorithms. 

• Outputs of the prediction stage: We do not intend to make any prediction for ADS. 
ADS, especially the distributed collaborative version, only take advantage of the 
alarms received. But a new decision can be made anytime a new alarm arrives.  

• Learning phase speed: It has to be as fast as possible in order to make possible 
detection as early as possible, as well as launching countermeasures. 
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• Interaction with the routing/forwarding system: The ADS will report any anomaly 
to the routing/forwarding system. The list of anomalies is not completely set yet. So, it 
is impossible at this time to completely define the set of alarms to be sent to the 
routing/forwarding system. However, we can imagine that the same kind of alarms as 
the ones described as inputs for the distributed collaborative IDS could be used, i.e. 
including an indication about the type of anomaly and its features. Then, in case of 
attack, the routing/forwarding system could easily drop attack-constituting packets. In 
case of legitimate anomaly as flash crowd, it could adapt the routing strategy in order 
to optimize the performance and QoS levels. 

6.3.2.3. Active monitoring applied to anomaly detection  
• Learning Stage: We need the ML algorithm to be able to give us some reliable 

threshold for each indices/distances and each parameter of these indices/distances. 
Example: a threshold for Entropy, Kullback-Leibler distance and Hausdorff distances 
[65] and the optimum values for the parameters of the distribution's calculation (size 
of the window and interval between each window or overlapping). 
Note also that, as we need to adapt to the network conditions, the learning should be 
on line. 

• Inputs variables to the machine learning module: The inputs are the metrics 
gathered by the active measurements: real numbers (like times series, packet loss 
ratio). The values of the parameters in the distances/indices can also be seen as inputs. 
These parameters can be integer or real numbers. Note that the types of inputs are 
static but the values of the inputs are constantly changing. 

• Outputs of the prediction stage: We need a binary classification to know whether we 
have an anomaly or not. But we also need a classification (if possible) for the type of 
anomaly detected (port scan, network scan, DoS, DDoS). 

• Learning phase speed: It has to be as fast as possible in order to make possible 
detection as early as possible, as well as launching countermeasures. 

• Interaction with the routing/forwarding system:  The same interactions as we 
described in the Traffic anomalies detection case.  
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7. Routing 

7.1. BGP 

7.1.1. Use Case Description 

7.1.1.1. Path Exploration Overview 
Behavior of path vector protocols such as BGP is inherently associated with their path 
dependencies: the path selected by a router depends on paths learned by its neighbors which, 
in turn, is influenced by the paths selected at the neighbors' peers, and so on. This property of 
exchanging vectors of ASes (or paths) to prevent routing loops leads also to the so-called 
path exploration [18, 20] phenomenon that delays BGP protocol convergence [20].  
 
As a path vector protocol, BGP exhibits thus path exploration phenomenon. We illustrate the 
path exploration phenomenon by an example and then describe why, in general, it is 
impossible to avoid this phenomenon by solely relying on the AS_Paths associated with BGP 
routes. In this example, we denote an AS_Path as [An, An-1... A1, A0], where A0 is the origin 
AS to which d belongs and An the local BGP router. 
 

 
 

Figure 7.1: BGP and path exploration. Solid/dashed lines represent eBGP/iBGP sessions 
 

Consider the topology in Fig. 7.1. Now suppose AS0 announces a path to destination d, this 
announcement is received at its neighbors and propagated hop by hop. Finally, when the 
network converges, AS5 knows three paths to reach d, i.e., [3,2,1,0], [4,2,1,0], and [7,6,1,0] 
(preferred in that order). 
 
Now consider what happens when the link between AS0 and AS1 fails, making d unreachable 
at AS1. This failure triggers the following sequence of events: AS1 sends withdrawals to AS2 
and AS6. In turn, each of them sends withdrawal to their own neighbors. Eventually, AS5 will 
receive withdrawals from each of AS3, AS4, and AS7 (in some order). Suppose the first one 
was from AS3. AS5 then removes the path [3,2,1,0], selects [4,2,1,0] as the best path and 
sends it to its (other) neighbors. However, if the withdrawal from AS4 arrives next, then this 
best route is invalidated and AS5 selects (and announces) [7,6,1,0]. Finally, after AS5 
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receives the withdrawal from AS7, it invalidates the path announced earlier and sends a 
withdrawal. 
 
This cycle of selecting and propagating (invalid) paths is termed path exploration. Clearly, the 
cycle stops after all the obsolete routes have been explored and invalidated. 

7.1.1.2 BGP Event characterization 
The following parameters are possible learning parameters as they characterize events in BGP: 

1.  Temporal characteristics 
• Arrival time 
• Inter Arrival time (IAT)  

           between previous BGP update message 
     between previous BGP update message with spatial characteristics 

2.  Spatial characteristics 
• AS originator 
• Prefix 
• AS_Path (which characterizes the type of event: longer, shorter or equal) 
• Peer  (BGP speaker from where the BGP update message is received) 

 
Note the assumption is made here that a pattern detection technique can be used so as to 
identify path exploration occurrence. Indeed, BGP is a path-vector protocol: localizing 
topologically where a failure happened in the network is not trivial in BGP as only path-
vectors are communicated on updates learning opportunity. The objective is here is thus the 
detection path exploration in BGP and, if possible, accelerate this process (i.e., avoiding the 
exchange of useless BGP UPDATE messages between routers) so as to eliminate its 
detrimental affects on BGP convergence [19]. After its detection, a router could decide to 
select directly to the actual (and correct) path that will be advertised to its downstream peers. 
A desired side effect of this acceleration would be to reduce the BGP churn generated during 
the path exploration. Compared to other damping techniques the process here does only rely 
on an accelerated route selection process. Other solutions have been proposed [67, 68] but 
they have the disadvantages of being very difficult to implement and to deploy due to 
modifications to BGP itself. 

7.1.2. Interaction with Learning Module 

7.1.2.1. Input to the Machine Learning Module 
The input to the machine learning module takes the form of (a sequence of) BGP UPDATE 
messages. Each BGP UPDATE message takes the form of a byte stream as detailed in [18].  
 
Each BGP UPDATE message contains several attributes such as the Network Layer 
Reachability (NLRI), the Withdrawn Routes, and the Path Attributes [18]. The Path 
Attributes are of keen interest for us, particularly, the AS_Path, that identifies the ordered list 
of AS numbers through which routing information carried in the UPDATE message has 
passed [18]. 

7.1.2.2. Output of the Machine Learning Module 
The output of the learned model should help in deciding whether the received BGP update 
message should be forwarded to the router's neighbors or not and which update shall be 
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generated by the local BGP router to its own neighbors. Depending on the class (see below) 
in which the BGP message falls, the UPDATE message is propagated or not. 

• If the update belongs to the exploration free class it can be forwarded per MRAI 
(Minimum Route Advertisement Interval, the minimum timer between two UPDATE 
messages) local setting. 

• If the update belongs to the exploration seed class and that prefix is withdrawn:  
 
The local BGP router should prevent selection of an "exploration cycle" AS_Path (if present). 
If an "exploration cycle" is received as part of the next update then the router should hold its 
selection. The local BGP router should prefer selection of another "exploration seed" AS_Path 
(if present). If none are present for that destination before half of the Md timer for that 
destination prefix d elapses, then the local BGP router shall select one of the "exploration 
free" sequence. 

7.1.2.3. Classifying BGP Events 
A path exploration phase is characterized by a withdrawal of a route towards a destination 
prefix previously selected and installed in the Local RIB (i.e., the destination prefix is 
declared unfeasible) followed by the advertisement of that destination prefix with a longer 
AS_Path, a different AS_Path of the same length, or with the same AS_Path but different 
attributes. To determine occurrence of such event(s), the task consists in classifying the 
AS_Path that are inducing path exploration from those that are "safer". As such this 
classification can be easily extended so as to discover the seed sequences. 

7.1.2.3.1. Binary Classification 
The classification task consists in determining if a BGP UPDATE message falls within a 
path exploration phase or not.  

• If the BGP UPDATE message does not fall in path exploration phase (path 
exploration free), then the BGP UPDATE message is propagated as described in the 
BGP specifications [18]. 

• If the BGP UPDATE message falls in path exploration phase (path exploration seed), 
then determine if the sequence to which the BGP UPDATE message belongs will 

o Either stabilize to a newly preferred path for the same prefix 
o Or not. In this case, the path exploration phase ends with no path for the 

destination prefix. 
 
Base on this classification the purpose is to accelerate the BGP exploration phase either by 
directly determining which BGP UPDATE message to be propagated to the router's BGP 
peering neighbors (that avoids the exploration sequence) or by directly determining the 
absence of a stable preferred route for the destination prefix. A specific message indicating 
the absence of a stable path for that destination prefix to the BGP downstream neighbors may 
be considered. 

7.1.2.3.2. Classification Based on Pivot AS 
In this case, the classification criterion is based on the presence of a pivot AS in the AS_Path. 
A pivot AS is defined as an AS giving access to a critical link (which is in most cases a link 
defining a client-server relationship between two ASes [20]). Critical links can be identified 
using spectral analysis (see below). In the example depicted in Fig. 7.2, AS2 is a pivot AS. 
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Figure 7.2: BGP Path Exploration Example 

 
The classification task consists then in classifying AS_Paths per destination prefixes d as 
follows: 

• Class 1: includes the set of AS_Paths that do not cross a pivot AS. Using the example 
depicted in Fig. 7.2: AS_Path [1,0] belongs to that class. These AS_Paths are expected 
to be exploration free. 

• Class 2: includes the set of minimum length AS_Paths that crosses pivot AS (AS2 and 
AS4). AS_Path [2,0] belongs to that class. These AS_Paths are exploration seeds. 
Indeed, the AS_Path of Class 2 [2,0] defines a seed sequence because after its 
withdrawal, an update sequence closely coupled in time of longer AS_Path selected 
from Class 3 would result in exploration phase. 

• Class 3: includes the set of other AS_Paths that cross a pivot AS (AS2 and AS4). 
Using the above example: [3,2,0], and [4,3,2,0] belong to that class. These AS_Paths 
are segments part of exploration cycles. When the element under failure is removed 
from the AS topology, the concatenation of the remaining AS_Paths (e.g. [5,4,3,2] x 
[2,5]) with the AS_Path between the pivot AS and the local AS shows a cycle.  

 
A timer defined as Md = T_Max length sequence - T_Min length sequence is maintained per 
destination prefix. The latter sequence belongs to the exploration seeds class. One timer is 
maintained per exploration seed sequence. 
 
Consider now the topology depicted at the right hand side of Fig. 7.2, and let us assume that a 
link between AS0 and AS4 is added, or AS4 is subject to a policy change. A new set of 
AS_Paths will reach AS5: [4,0], [3,4,0], and [2,3,4,0]. The AS_Path [4,0] falls into Class 2, 
whereas AS_Paths [3,4,0] and [2,3,4,0] falls into Class 3. 
 
To determine critical links, we make use of spectral analysis of the inter-domain routing 
topology. This technique provides for metrics allowing to extract most important global 
characteristics of the topology: spectrum-related metrics provides bounds for critical graph 
characteristics such as distance-related parameters, expansion properties, and values related 
to graph resilience estimation under node/link removal. The latter provides measure of 
network robustness under link removal (equals minimum balanced cut size of a graph). 
 
We define the matrix A as the n × n adjacency matrix of a graph constructed by setting the 
value of its element as aij = aji = 1 if there is a link between nodes i and j. All other elements 
have value 0. Scalar λ are the eigenvalue and vector v the eigenvector of A if A v = λ v. The 
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spectrum of a graph is the set of eigenvalues λ of its adjacency matrix A. Most networks with 
high values as eigenvalues have small diameter, expand faster, and are more robust. The 
graph’s with largest eigenvalues provide bounds on network robustness with respect to both 
link and node removals.   

7.1.2.4 Interaction with the Routing System 
BGP UPDATE messages constitute the input to the machine learning module. BGP routers 
(or speakers) advertise network reachability information about destinations by sending to 
their neighbors UPDATE messages containing set of destination address prefix 
announcements (feasible routes) or withdrawals (unfeasible routes) together with attributes 
associated to a path to these destinations.  

• An announcement informs neighboring BGP routers of a path to a given destination. 
When a local BGP router propagates a route learned from the UPDATE message sent 
by one of its peering BGP routers, it modifies the route's AS_Path attribute based on 
the location of the BGP router to which the UPDATE message containing that route 
will be sent. 

• A withdrawal is an update indicating that a previously advertised destination is no 
longer reachable. Route withdrawals only contain the destination and implicitly tell 
the receiver to invalidate (or remove) the route previously announced by the sender. 

A BGP router receives UPDATE messages from its BGP peering neighbors following a time 
varying interval bound by a minimum threshold. As mentioned in [18], there is a minimum 
amount of time (MRAI) between two BGP UPDATE messages sent towards the same BGP 
router. Thus, a given BGP router receives one BGP UPDATE message per MRAI time 
interval per neighbor (and sometimes per destination prefixes d).   
 
The output (i.e., the class of the BGP UPDATE message) of the learning process is used by 
the selection process of the local BGP router. This output is not distributed to the router’s 
neighbors or other nodes in the system. However, the router's output (i.e., the BGP update 
messages that are forwarded) will influence the route selection of the BGP router's neighbor 
as depicted in Fig.7.3 (the crossed circles represents selectors acting at the input and output 
of the "BGP route selection" process). 
 

 
Figure 7.3: Interaction between the routing use case and the Machine Learning Engine 
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7.1.2.4 Machine Learning Process and Technique 
The semi-supervised or unsupervised learning algorithm would be executed online and be 
distributed on BGP routers. For maintenance and further development reasons, it is important 
that the learning model is understandable, possibly at the cost of an accuracy loss. 
 
The prediction stage must be executed as fast as possible because a BGP router may receive a 
huge quantity of BGP messages within a small time window. Consequently, the prediction 
shall be executed as fast as possible to prevent slowing down the whole BGP route selection 
process. 

7.2. Network Recovery and Resiliency 

7.2.1. Use Case Description 
 

 
Figure 7.4: Router update process 

 
One can model the recovery process in IP routers as a sequence of four-steps: 

1.   Computation of the shortest path tree based on an updated link-state (LS) database: 
taking 30 to 50 microseconds per node in the network. 

2.   Update of the central routing information base (RIB) based on the shortest path 
computation. 

3.   Update of the central forwarding information base (FIB) based on the RIB. 
4. Distribution of forwarding information base towards the line cards: taking 30-50ms 

per set of updates (see Fig. 7.5). 
 

 
Figure 7.5: Update process time 

7.2.1.1. OSPF Event Modeling and Clustering 
In an IGP environment, from the moment a Link State Protocol Data Units (LS PDU) is 
received that is newer than the current database contains, the OSPF protocol [12] will 
automatically trigger step 1 in the process as shown in Fig. 7.4. However for certain events, 
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more intelligent behavior is possible based on historical behavior of two types of PDUs: Hello 
messages which are sent between neighbors to poll the status of the adjacency and LS 
messages which together – from all routers in the network – build up a view on the entire 
network topology by communicating the state of their links. Hello messages are sent on a 
periodic basis, typically every 10s. LS PDUs have both periodic transmissions (typically 
every 30 min, at half MaxAge time, parameter fixed at 60min), and triggered transmissions 
upon a network topology event (failure, new link/node, etc.). 
 
Failure detection between OSPF routers can be based either on OSPF Hello PDUs or on a 
faster Hello protocol such as Bidirectional Forwarding Detection (BFD [42]), where the 
periodicity is in the order of tens or hundreds of milliseconds. The neighbor adjacency 
between two OSPF routers typically is declared down from the moment the timer reaches 
RouterDeadInterval, which is typically a multiplier (e.g., three) of the HelloInterval itself 
(BFD reacts similarly). However, using the RouterDeadInterval technique does not take into 
account the historical behavior of sent and received Hello PDUs. This means that it is not 
improbable that failure detection can happen earlier by several orders of magnitude compared 
to the usual periodicity. 
 
A possible policy using a probability model for Hello PDUs arrival time can for example 
assume a failure from the moment the modeled chance that a Hello PDU will still arrive 
becomes too small (see Figure 7.6). Modeling will become more difficult because of the 
randomization factor by which the periodicity at the sender will have a delay of 0-15%, 
meaning that a message will be send in a time frame varying from 15% earlier then the 
average value till 15% later. Techniques will need to overcome this by taking additional input 
into account such as the probability of the sequence of several messages, the correlation 
between Link State PDUs in multi-access segments, etc. In multi-access (MA) networks, for 
example Ethernet networks, Hello adjacencies are only held between an elected Designated 
Router (DR) and other routers connected to the MA network. Because the underlying MA 
network topology is unknown (being a layer 2, while IP is network layer 3, see the possible 
topologies in the cloud in Fig. 7.6), routers do not know beforehand which adjacencies are 
correlated. Learning these correlations can help routers to decide faster on how to reroute, and 
what traffic to reroute earlier. For example, if a failing adjacency between the DR and node A 
always seems to imply a failure between the DR and node B, one does not have to assume 
that node B is reachable via the MA network. 
 
Sequences of LS PDUs can be correlated in different ways, for example: node failures 
resulting into related LS Updates for the adjacent links, Shared Risk Group (SRG) failures 
resulting into related LS Updates of links being contained in the group or MA network 
failures resulting into correlated LS Updates of DR adjacencies that failed. Figure 7.6 
illustrates that if the node in between node a, b, c and d fails that all of these nodes will flood 
their LS Updates over the network. This means that all routers receiving these LS Update 
messages will recalculate all routes (step 1) on every update, taking into account the 
announced link failure. However more efficient procedures are possible. Goyal et al. make 
use of hold-off timers to wait for routing database update until it is sure that no node failure 
has occurred [43], but this has the following issues i) what is the ideal hold-off interval, and 
ii) how will you synchronize different router databases. 
 



FP7-ICT-2007-2 – ECODE : Experimental Cognitive Distributed Engine 

Deliverable D2.1    Page 46 of 70  

 
Figure 7.6: Modeling and Correlating Hello PDU Arrival Time 

 
Instead of waiting on possible next LS Updates, another option could be to predict the type of 
failure based on the sequence of received LS Updates. This can be illustrated for example, 
using Fig. 7.7. Let us assume that as a result of a failure, node receives LS Updates from A 
and B. These LS Updates indicate that A and B have lost connectivity to the node in between 
A, B, C and D. Node E could make the prediction, based on historical behavior, that it is more 
probable that the node X located in between nodes A, B, C and D failed rather than only the 
link from node A towards X and/or the link of node B towards X. The difference with Goyal 
et al.'s solution of [43] is that the switch-over happens as soon as possible, and that no 
arbitrary waiting time is involved to expectedly reach synchronized router's decision. There is 
a chance that the wrong prediction is made resulting in a penalty on the network routing. 
However, as the prediction will act as a worst-case prediction (node failure or not), no 
additional packet loss can be caused by this prediction. Similar techniques should be 
developed in order to detect the simultaneous failure of links belonging to SRGs. 
 

 
Figure 7.7: Correlated LS Update PDUs on node failure 
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7.2.1.2. OSPF Cycle Detection and Prediction 
During the process of OSPF re-convergence, temporal loops can occur. This is illustrated in 
Fig. 7.8. Even a simple topology as depicted in this figure a temporal loop can happen upon 
failure. Let us for example assume that the link between B and C fails, and that C and D have 
updated their FIB, but E has not updated its own FIB. For packets from C towards B, this can 
result into C forwarding packets to D, forwarding packets to E, sending them back to C, 
because E still has a forwarding entry with as next-hop C on its shortest path to B. 
 

B

E D

CA

F
 

Figure 7.8: Temporal loop on failure 
 
This can lead to temporal packet loss and local network overload. Some techniques such as 
ordered FIB [44] updates are designed to avoid transient loops. However, this technique can 
slow down re-convergence and changes the router update process. 
 
Therefore, a learning technique is desirable which is able to quickly detect cycles during the 
re-convergence process. The desired technique can mark packets that make use of updated 
forwarding entries (for example, updated FIB entries in C). Based this marking, neighbors e.g. 
D only make use of update forwarding entries to forward these (re-routed) packets. If such 
entries are not available, a limited number such packets can be used as probes to detect 
possible resulting cycles. From the moment a cycle is detected for some prefixes associated to 
a certain interface, another forwarding interface could be selected to avoid the detected cycle. 
Besides this reactive component, a predictive component should be made such as to forward 
prefixes over the interface which has the lowest probability of forming cycles. 

7.2.1.3. Minimizing Packet Loss During Routing Table Switch-Over 
By default the updates from step 2 towards 3 of the cited update process happen in random 
order, meaning that a prefix update related to important traffic stream could be delayed much 
longer than necessary. More optimized behavior should take into account real-time traffic 
characteristics such that updates can be made more efficient, i.e. packet loss during switch-
over should be minimized.  However, the goal of introducing additional logic to make achieve 
this behavior should not result in heavy computational tasks, as this would again slow down 
the entire process; thus, contradicting the initial goal. Therefore, the following is targeted: 

1. Develop a real-time learning traffic monitoring mechanism which is able to detect the 
ideal interval in between which traffic needs to be monitored and for how long it 
needs to be monitored. The resulting mechanism maintains statistics (by means of 
counters) of the number of packets, per destination prefix in the forwarding table. The 
intensity of this task is linearly proportional to the number of destination prefixes. 
Thus, the monitoring mechanism should be counter-adaptive: large sampling rate for 
large flows (elephants) while being able to monitor small flows (mice) by means of 
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small sampling rate. As this is a well-investigated research domain, further elaboration 
can be based on for example ANLS techniques [45]. 

2. Develop a classification mechanism to rank the resulting tuples (traffic stream, 
volume) in a set of classes. The mechanism should be computationally more efficient 
than known sorting algorithms (see Sec. 7.2.2.). A first approach of using machine 
learning for selecting sorting algorithms can be found in [46]. 

3. Work out a heuristic such as to optimize the quantum interval over time given the 
input of a set of traffic streams, their volumes and their associated classes (previous 
step). The ideal quantum time results into minimal packet loss by making an 
intelligent choice avoiding that more high importance traffic classes (previous step) 
have to wait on lower important classes in order to be switched-over. 

7.2.2. Interaction with Learning Module 
The intra-domain routing system is distributed as network nodes communicate by sending 
each other Hello PDUs (neighbors) and LS PDUs are flooded to all the network nodes (input).  
Output among the nodes is restricted to LS Acknowledgement PDUs sent to each other to 
confirm the processing of a received LSU PDU. The decision making in the routing system is 
decentralized as all the nodes build up their routing table individually (however being based 
on information synced with other nodes). 

7.2.2.1. Inputs to Machine Learning Module 
The following input is available at nodes: 

• Routing protocol related (all input is locally available): Hello PDUs from OSPF or 
BFD, LS PDUs from OSPF, arrival time and associated header fields, and link load 
information. 

• Traffic related: during measurement at the forwarding plane and from a given traffic 
stream. 

7.2.2.2. Output of the Machine Learning Module 
Inputs are indeed time-varying as PDUs and their related attributes change over time. The 
desired outputs are depending on the desired tasks: 

• OSPF modeling and clustering 
• Traffic dependent router update processing (based on traffic-related input) 
• Predictive module for estimating effect of routing configuration 
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7.2.2.3. Interaction with the Routing System 

Routing Engine

Cognitive Engine Forwarding EngineMonitoring Engine

EvM = (OSPF) Event Modeling and clustering (sec 7.2.1.1)
CD = (OSPF) Cycle Detection (sec 7.2.1.2)
RsO = Router switch-over Optimization   (sec 7.2.1.3)
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Figure 7.9: Interactions of the resilience use case within the ECODE architecture 

 
For the case described in Sec. 7.2.1.1, the Machine Learning Engine (or Cognitive Engine) 
receives its input from either the Routing Engine (via CR interface) or the Forwarding Engine 
(via CF interface). The collected information comes from incoming PDUs from OSPF or 
BFD. This input is used to learn correlations between OSPF events (clusters). These will be 
stored in the KIB.  When a certain pattern is detected in the Machine Learning Engine (for 
example early failure detection, or failure correlation) a decision is sent to the Routing Engine 
(via CR interface) as shown in Fig. 7.4. This decision should subsequently trigger SPF re-
computation. The entire learning process of this case is local. 
 
For the case described in Sec. 7.2.1.2, the cycle detection functionality in the Machine 
Learning Engine receives its input mainly from the Monitoring Engine (runtime traffic) and 
the Routing Engine (the used topology deduced from the Link-State database), and again 
stores learned information in the KIB. Upon cycle detection, the Machine Learning Engine 
signals to the Routing Engine and Forwarding Engine to directly send cycling traffic on 
another interface.  The entire learning process of this case is local. 
 
For case discussed in Sec. 7.2.1.3, the Machine Learning Engine needs path- and traffic-
related information from the Monitoring Engine in order to model the traffic classes and to 
deduce the ideal monitoring and inter-monitoring interval. These last two parameters will be 
fed back to the Monitoring Engine (both directions via the CM interface). Upon the reception 
of a LS Update, the routing engine triggers the Machine Learning Engine in order to optimize 
its routing-forwarding table update process in function of minimizing packet loss (requesting 
for traffic classes, and ideal quantum interval sequence). The entire learning process of this 
case is local. 

7.2.2.4. Machine Learning Process and Technique 
For case described in Sec. 7.2.1.1, learning will happen at two stages: one before and one 
after failure occurrence. Before the failure, one can only model typical protocol dynamics 
such that the given model can be used to estimate how far the current situation falls regarding 
the modeled protocol dynamics. Once a failure has occurred, this information can be used as 
feedback and be taken into account such as to model correlated failures in point-to-point 
networks (SRGs) or MA networks (correlated adjacencies, Sec. 7.2.1.1).  
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All learning involved happens online, except for Sec. 7.2.1.2. For the case discussed in Sec. 
7.2.1.2, learning happens during traffic measurements, to deduce traffic behavior such that 
monitoring intervals can be estimated continuously to classify the given traffic streams. All 
learning involved happens online except for classification for which it is possible to introduce 
upfront learning.  

 
Figure 7.10: Classification of traffic streams in terms of volume

8. Path Selection 

8.1. Informed Path Selection 

8.1.1. Use Case Description 
While, previously, a single path between two machines was assumed, we are now seeing with 
the evolution of the Internet topology expansion the rising of multiple paths with different 
performance. For example, end systems can be dual stack, or their network can be multi-
homed. Another example is when LISP (Locator/Identifier Separation Protocol) [33] is used, 
thus allowing a given identifier (i.e., a client or server) to be reached via multiple locators 
(i.e., edge routers). In such a context, it is crucial for both applications and operators to easily 
select the path that better suits their needs. This is clearly the issue we tackle by proposing a 
generic path selection service that works in any context requiring a path selection.  

8.1.1.1. Path Selection Requirements 
We are heading towards an Internet that makes available a set of paths to the host (in terms of 
source and/or destination addresses) for reaching, for instance, any content.  In such a context, 
it is thus crucial for applications to select the ''path'' (i.e., the <source, destination> address 
pair) that better suits their requirements. These requirements might be expressed in terms of 
network performance (e.g., delay, bandwidth). In addition, it would be interesting for 
applications to increase their reliability. Indeed, by taking into account multiple paths, 
whenever the current path fails, it should be possible to quickly and easily switch to another 
path.  Further investigation should reveal the real benefits or drawbacks of such a switch.  
Another requirement for applications refers to the cost associated with network usage. 
Applications might want to favor the cheapest path and, consequently, decrease their 
networking bills.  In addition, battery-based devices would like to avoid consuming too many 
resources when selecting a path. This means that, ideally, the path characterization should be 
done elsewhere. Finally, applications should be able to decide by themselves which path to 
use, meaning that the path selection cannot be forced on them by a third party but rather 
suggested. 
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Allowing each application to make this selection by itself is not a sustainable solution (for 
scaling and triggered control/responsiveness and consistency/performance reasons). Instead, 
letting applications to cooperate with operators might lead to a win-win situation. Indeed, by 
helping applications to select a path, operators can meet their own requirements.  The first 
requirement of an operator concerns the details it should reveal to allow the path selection.  It 
is obvious that operators do not wish to disclose details on their topologies as well as their 
policies. Operators might also want to influence both incoming and outgoing traffic, so that 
they could control their own network usage in terms of performance but also in terms of cost 
and traffic engineering (i.e., some links could be defined as primary links while others are 
backup links). 
 
As a global requirement (i.e., it is common to applications and operators), any path selection 
service deployed should be scalable, should not imply a change in routers, nor add state 
information in them. Moreover, it should also be generic, i.e. addressing future scenarios. 
 
It is well recognized that traffic fluctuates with time. It is thus mandatory to build traffic 
engineering systems that are traffic independent. This is clearly the approach we follow in this 
section when discussing the high-level behavior of a path selection mechanism. 

8.1.1.2. IDIPS Server 
Our path selection mechanism is called IDIPS ''ISP-Driven Informed Path Selection'' [37, 38]. 
 
Our assumption is that specialized boxes are installed in the network. These boxes, called 
IDIPS servers, are in charge of running a path selection algorithm reflecting the operator 
requirements in terms of traffic engineering. Every time an application or service needs to 
select one path among others or to rank a list of paths, it contacts the box that replies with 
ranked paths. In our terminology, the specialized box is called a ''server'' and anything 
querying the server is called a ''client''. It is worth noticing that more than one server can be 
deployed in the network and that clients do not have to deal with that (e.g., servers can be 
deployed in anycast). 
 
With respect to the ECODE architecture (see Sec. 5), the IDIPS functionality can reside in 
routers or in dedicated servers. When it is activated in a router, the local interfaces CR, CF and 
CM (see Fig. 5.2) will be directly available to access the Routing, Forwarding and Monitoring 
Engines present in the router. When the IDIPS functionality is deployed in separate servers, 
the principle remains the same, but the local interfaces CR, CF and possibly CM will be 
accessed remotely. 
 
Any request sent by a client contains the following information: a list of sources, a list of 
destinations and an optional performance criterion (e.g., route stability). The server processes 
the request and builds a list of all possible paths based on those two lists. This paths list is 
then ranked using information on the network state owned by the server such that the higher 
the rank the more promising the path. 
 
Sources and destinations sent by the clients are typically IPv4 or IPv6 addresses. Instead of 
replying with complete addresses, the server can work with prefixes. In other words, if two 
paths with different ends have the same rank and if it is possible to aggregate the sources 
within a single prefix and to aggregate the destinations within a single prefix, the returned 
ranked list will only contain one path where the source is a prefix encompassing the two 
source addresses and the same for the destination. Aggregation offers several advantages. It 
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allows one to reduce the size of the replies (e.g., a single prefix can include several addresses 
indicated in the request) as well as the amount of potential paths to process. In addition, it 
avoids revealing topology details and network policies to clients.  Nevertheless, a drawback in 
such an approach is the loss of precision (e.g., the reachability of a prefix is not the same as 
the reachability of a host). 
 
In addition to a ranked prefix pair list, the server reply contains a time-to-live (TTL) 
information indicating how long the path ranking remains valid. This TTL is configured by 
the network operators and depends on the performance criterion provided by the client. When 
the TTL expires, it is up to the client to contact the path selection service to obtain a new path 
ranking. 
 
Considering ranked prefix pair lists allows one to reduce the risk of attacks or the disclosure 
of sensitive information to competitors, which is often required by ISPs.  Further, it allows the 
operators to modify the ranking algorithms according to their needs without involving clients. 
It thus separates the clients and operators while enabling cooperation. 

8.1.1.3. Cooperation between IDIPS servers 
Better scalability can be achieved if an IDIPS server can rely on other IDIPS servers 
(typically in other ASes) to reduce its measurement load. For example, IDIPS servers could 
measure path characteristics between themselves, rather than to (all) remote locators/prefixes.  
 
If IDIPS servers are all associated with a large set of locators/prefixes, and if every IDIPS 
server can measure locally the characteristics of paths towards its own locators/prefixes, we 
may approximate the characteristics of a path by combining the characteristics of the 
following 3 paths: 

• from source to source IDIPS (monitored by source IDIPS), 
• from source IDIPS to destination IDIPS (monitored by either or both of them), 
• from destination IDIPS to destination (monitored by destination IDIPS). 

 
If there are N IDIPS servers and K locators/prefixes per IDIPS server, the number of paths to 
be monitored per IDIPS server boils down from O(N*K) to O(N+K). 
 
This is a win-win situation, because all IDIPS servers win if all co-operate. To this end, IDIPS 
servers in ASes could join a P2P (peer-to-peer) system. Similarly some edge networks could 
run an IDIPS server on their edge router, and join this P2P system. 
 
For delay measurements for example, the measurement load can be further reduced. If N 
servers ping all the other ones, the measurement load is O(N2). Now if IDIPS servers run an 
Internet Coordinate System (ICS), e.g., Vivaldi [39], every IDIPS server pings a fixed number 
(say 32 or 64) of other IDIPS servers only, and infer their coordinates in a suitable metric 
space, allowing them to estimate other delays that are not measured. The load boils down to 
O(N) instead of O(N2). 
 
In this scenario, every IDIPS server would also accept to disclose its coordinates to others. 
This can be seen as an extra level of co-operation, but it pays off, reducing once again the 
measurement load by a factor N. 
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8.1.2. Interaction with Learning Module 
An important engine of the IDIPS server, called ''Path Information Collector'' (PIC), collects 
path information. Information is of two types:  

• Administrative information (i.e., network policies and billing, but also routing 
information such as BGP or IGP);   

• Measurements information (i.e., active and passive measurements).  
 
This PIC element can be seen as a particular Monitoring Engine (see Fig. 5.2). Therefore, it 
will communicate with the Machine Learning Engine to provide its measurements. The 
Machine Learning Engine will learn from these data and communicate in return with the 
Monitoring Engine, e.g., to adjust the frequency of active measurements. The nature of these 
exchanges will be further elaborated below. 

8.1.2.1. Measurement prediction and adaptation 
The problem of predicting future QoS quantities from past observations can be stated, in 
machine learning terms, as a time series regression problem. The data D consists of 
measurements from the previous time step t-1 back to some time index t-l in the past: D = {yt-
1, yt-2, …, yt-l}.  A model of this time series aims at predicting the next value of the metric yt 
and, possibly, additional values in the future yt+1, yt+2, … This problem thus reduces to a time 
series modeling and prediction problem. 
 
A time series is stationary if its statistical properties, such as its moments, do not change over 
time. Various studies [15, 16, 17] have found that the time series that model the evolution of 
metrics considered by the IDIPS server are piecewise stationary. As a result, we can partition 
a time series into k intervals and consider the time series to be stationary inside any interval.  
We identify two issues: 

1. How to detect a change of regime or, in other words, how to determine the stationary 
intervals. 

2. How to model time series in a given stationary interval. 
 
We will first address the second issue by considering various modeling alternatives (auto-
regressive, moving average, and auto-regressive moving average models. As a second step, 
we will consider Switching Markov models that generalize the previous models by allowing 
for various regime changes. 
 
The application of those time series modeling to Internet QoS measurements raises several 
issues: 

• Among the possible time series models considered, one needs to investigate which is 
the most appropriate choice for QoS measurements. For a given model family, the best 
meta-parameters need to be chosen. Selection criteria include the amount of training 
data required to come up with reliable estimates, the actual degree of on-stationarity of 
the observed time series, space and time requirements during the learning phase and 
the prediction phase. 

• The first objective of QoS measurements modeling is the prediction of the next 
measurement(s) based don past observations. Past observations may, however, not 
always be fully available since one would like to reduce as much as possible the 
amount of active probing. The main issue is to maximize the quality of the predicted 
measurements while minimizing active probing. In other words, one has to optimize a 
performance/cost trade-off of some sub-sampling of the actual measurements. 
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• Parameter estimation is the central task of a learning algorithm with a usual trade-off 
between the complexity of the model to be estimated and the robustness of the 
estimates. In this context, maximum likelihood estimation is not necessarily the best 
choice. Modifying the maximum likelihood can be done either explicitly by adding a 
regularization term to favor simpler models or, implicitly, by smoothing the maximum 
likelihood estimates. One open issue is to determine which of those options work best 
in terms of quality of the estimated models and computing time. 

• The presentation focuses so far on the modeling and the prediction of uni-dimensional 
time series, for instance the delay measure. In our IDIPS context, several related 
measurements are of keen interest (delay, bandwidth, jitter, etc.). Extension to 
multivariate time series modeling can be considered. The objective is to explicitly 
consider the dependence between various measurements rather than modeling them 
independently. 

 
These time series prediction techniques are complementary to current development in 
measurement scalability [40]. 

8.1.2.2. Finding low delay paths 
A first example of a co-operation between IDIPS servers is to assume that they all take part in 
an ICS (Internet Coordinate System) and will therefore infer their coordinates in a suitable 
metric space. By measuring RTTs with a limited set of neighbor IDIPS servers (say 32 or 64), 
every IDIPS server will nonetheless have good RTT estimations to all others, at no extra 
measurement cost. 
 
Moreover, by observing the ICS (e.g., its inaccuracies, its oscillations), we expect to infer 
other interesting path characteristics. For example, if there is an indirect path between two 
IDIPS servers, via a third one, that provides lower latency (what is referred to as a TIV, i.e., 
Triangular Inequality Violation), it is known that the ICS will be inaccurate and some 
coordinate may not stabilize. By observing suitable variables that capture these phenomena, 
we plan to infer when there are shortcut paths for a given pair of source-destination IDIPS 
server. This again is useful to trigger a search for these paths and therefore propose a larger 
set of interesting paths to rank. 
 
We have already identified two sub-problems to be addressed by Machine Learning: 

8.1.2.2.1. Shortcut detector 
This detector should either predict whether the best path between two IDIPS servers is the 
direct path between them or an indirect path via some intermediate IDIPS servers (in which 
case, this is a binary classification problem) or predicts the expected gain of the shortcut (in 
which case, this is a regression problem) [41]. 
 
Input of the shortcut detector: source and destination IDIPS servers, ICS variables. 

Output of the shortcut detector: a criterion (or set of combined criteria) telling with high 
confidence whether or not there exists an indirect path (via other servers) that has a lower 
RTT than the direct path. 
 
The input can also include the level of (relative/absolute) gain the shortcut path should 
provide, in which case the output of the learning algorithm predicts whether or not there exists 
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an indirect path of this level between the source and the destination. Another possibility is to 
ask the learning algorithm to predict as an output the gain of the shortcut path. 

8.1.2.2.2. Relay detector 
This detector should predict the intermediate IDIPS servers that are more likely to offer 
interesting indirect paths to some destination IDIPS server. In this case, the output of the 
machine learning algorithm is thus a ranking of IDIPS servers according to their probability to 
offer a shortcut path between the source and destination servers. From a machine learning 
point of view, this could be considered as a ranking problem. 
 
Input of the relay detector: source and destination IDIPS servers (e.g., for which we know 
there is an interesting shortcut with high likelihood, see above). 

Output of the relay detector: a criterion to narrow the search of intermediate IDIPS servers 
that are likely to provide interesting shortcuts paths between the source and destination 
servers. 
 
For both shortcut and relay detectors the learning phase can be centralized and off-line. When 
models (e.g., the two above-mentioned criteria) are learnt this way, they can be plugged in all 
IDIPS servers afterwards. 
 
Models can also be tuned on-line in a decentralized way. For example, one could first plug the 
bootstrap model in all IDIPS servers and then tune their parameters locally by exploiting 
some online learning strategy. 

9. Accountability 

9.1. Profiling and Accountability 
Accountability has always been a requirement for the architecture of the Internet but at the 
same time, it has never been satisfactory addressed [52]. In fact, some researchers [13, 50] 
have observed that a solution has not been achieved due to the elusive definition of Internet 
accountability itself. Thus, plainly defining fairness in terms of flow rates and how these 
flows impact the network has been an impractical way of addressing the issue. The profile-
based accountability system proposes to go beyond simple flow rate control, by correlating 
profiles with subscribers’ usage and their impact on the network resources. The definition of 
profile and accountability is part of this system work. While a profile can be created 
depending on different measurements, such as flows, packets or time transition/correlation, 
accountability can be related to different entities such as a user, a host or even an application. 
[55, 56] offer a both a good list of possible flow measurements and a comprehensive review 
of machine-learning techniques used in traffic classification. This is an attempt to tackle a 
complex issue, thus as we further advance in the project and with feedback from discussion 
and experimentation, adaptation and evolution of the use case and system work will probably 
be required. 

9.1.1. Use Case Description 
To tackle the accountability problem there are three basic issues to be addressed that requires 
proper definition and clarity, i.e. who is accountable, for what and how to measure, and the 
consequences of failing. Moreover, profiles are defined by both traffic patterns and how the 
behavior of these patterns affects the network. In turn, traffic patterns are characterized by the 
subscribers’ network packet flows. Information of the network traffic is embedded in the 
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protocol headers and in the dynamicity of the packet flows, thus traffic characterization can be 
derived by closely examining and monitoring these two groups of parameters. 

9.1.1.1. Who is Accountable, for what and how to Measure 
There are several possible answers to the question on who is accountable. Looking at the issue 
from a microscopic to a macroscopic level one can define responsibility to different entities 
such as a socket, an application, a host or a subscriber. We will focus on the subscriber’s 
definition, which is characterized by all the traffic in a line card to/from a user connected to 
an access network. The advantage of this definition is that it has a legal or business aspect, 
since the relationship between the ISP and the subscriber can be framed in a contract through 
which accountability could be imposed. From a technical perspective and in a practical sense, 
subscribers or more generically the customer premise equipment (CPE) of a subscriber is 
assigned an IP address (usually by an ISP PPP- or DHCP-server after authentication from an 
AAA-server), which is used by the ISP WAN to identify traffic to/from a subscriber. All the 
traffic from the different devices in the home network goes through the CPE NAT. Thus, seen 
from the network, a subscriber traffic flow can be identified by the IP address given to the 
CPE. 

The second question, what a subscriber is accountable for and how to measure this 
accountability is a more complex issue. Here, we expect machine-learning techniques to 
contribute with a fresh approach to an important problem. There are two approaches for 
defining profiles. An expert can be used to provide a priori discrimination to traffic patterns, 
which could be used to feed a (semi)-supervised machine-learning algorithm, depending on 
how expensive the a priori discrimination procedure is to producing the labeled data. 
Alternatively, unsupervised methods could be used to infer profiles from the subscribers’ 
traffic pattern itself. Moreover, profiles should not be limited to the task of discerning 
subscribers’ network behavior, but it should also relate to the impact on the network. In 
addition to defining profiles, machine-learning techniques shall be used to monitor 
subscribers by classifying them to a particular profile. It should also indicate the deviation of 
subscribers from a specific profile. 

9.1.1.2. Network Traffic Characterization 
As far as profile-based accountability is of concern, traffic flows will be mainly based on 
network and transport layer protocol information, with the possibility of using link layer 
header (WAN information, i.e., CPE MAC address). The use of application layer information, 
through Deep Packet Inspection (DPI) technology is out of scope, due to the required 
computational resource. Moreover, it is expected that some of this information will be 
inferred from the machine-learning technology. In addition to the network information at the 
protocol level (independently of the layer), traffic patterns are characterized by the behavior 
and dynamics of packets flows in the time domain. Some measurements that might be used to 
characterize the traffic pattern are number of flows, average packet size, number of packets-
in/out, and average inter-packet gap per flow. Moreover, results of the subtask a1 (see Sec. 6), 
specially referring to adaptive traffic sampling and management will directly contribute to 
network characterization for profile-based accountability. 

9.1.1.3. Profile Modeling 
Profiles can be designed and devised in different ways. For example, profiles can categorize 
subscribers or profiles can be modeled to characterize actions. Modeling profiles in either 
way demands different specifications and requirements from the system.  
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Subscriber profiling assumes that there are different types of users, which demands or uses the 
Internet in discernable ways, with respect to the resources they require from the network. As a 
consequence their requirement and impact on the network are distinct. The advantage of this 
model is that it enables operators to determine new ways to define Fair Usage Policies (FUP), 
which are in fact the binding contract a user has with the operator.  

Action profiling is another way of modeling profile-based accountability system. The 
assumption is that these profiles will define actions subscribers are undertaking in the 
network. More specifically, the term action means network usage that has distinct properties 
and traffic load demand. For example if we translate this action to application level, users 
might be performing different tasks that have distinct network requirements, such as normal 
web browsing, use of P2P applications or file download. One-way of looking at action 
profiles (in respect to the subscriber profiles) is that they define the behavior on a restricted 
set of activity a subscriber undertakes within a certain period of time.  

In summary, subscriber profiles try to characterize the general subscribers’ activity in terms 
of traffic pattern and network demand. While action profiles characterize specific actions that 
a user undertake for a restrict time period (see Fig. 9.1). Profile-based accountability 
ultimately refers to the subscribers’ profile, while action profiles have been introduced as a 
means to achieve this end goal. A challenge then is to infer a subscribers profile from a 
sequence of action profiles, which will characterize a user and his/her demand on the network.  

 

   
Figure 9.1: Schematic view of subscribers (left) and action (right) profiles. 

9.2. ECODE Architecture Cross-Reference 

9.2.1. System Architecture 
The general functional diagram of the ECODE framework shows the distributed Machine 
Learning Engine and its relation towards the traditional elements of an IP network, i.e., the 
routing and forwarding engines (see Fig. 5.1). While the routing engine is a fundamental 
element, profile-based accountability is not expected to relate to this function. It will interact 
with the Forwarding Engine, both at the data collection and drive decision back to this engine. 
The profile-based accountability functional modules are divided in four blocks, where the 
machine-learning part is shown as the “classify” block in Fig. 10.1 (see Sec. 10).  The system 
will operate in two parts, one subsystem, i.e., learning, defining the profiles. At the same time, 
a second subsystem will be responsible for classification. The two first functional blocks 
composed the learning domain, while the classification domain is represented by the complete 
loop depicted in the functional diagram. The classification subsystem includes decision on 
how the system should react upon classification. If a subscriber is found to be breaching 
his/her profile, the system might decide to execute measures to bring the user to his/her pre-
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defined profile. For example, it can decrease the available bandwidth or block flows to that 
subscriber. 

9.2.2. Network Architecture 
As part of the networking domain, technical objective (b3)-profile-based accountability is 
closely related to the objective (a1)-adaptive traffic sampling and management. The first step 
for profile-based accountability requires data sampling and pre-processing, which consists in 
getting the raw data and perform feature selection and extraction. This is part of the objectives 
of adaptive traffic sampling and management. Fig. 9.2 shows the architectural diagram 
relating case a1 and case b3. Results of the adaptive traffic sampling and management task 
will be directly used as part of the solution for the profile-based accountability challengers. 
 

 
Figure 9.2: Architectural diagram showing case (b3 – in red) profile-based accountability and its 

relation to case (a1 – in blue) adaptive traffic sampling and management 
 
Fig. 9.3 shows an ideal network configuration including the profile-based accountability 
(PBA)-engine. While the PBA-engine resides on the access network, the engine would be 
capable of receiving network information from other elements. In this way, a more 
encompassing inference of the subscribers’ profiles in respect to the network resource 
allocation can be achieved (more detail in deliverable D3.1 - Detail Experimental Plan and 
Scenarios). Optimally, the PBA-engine will operate in a distributed, real-time mode, and 
learning is distributed over the access nodes where the engine resides. 
 

 



FP7-ICT-2007-2 – ECODE : Experimental Cognitive Distributed Engine 

Deliverable D2.1    Page 59 of 70  

Figure 9.3: Diagram showing the profile-based accountability module distributed over the network 
elements 

 

9.3. Interaction with Learning Module 
Many studies have already track the use of machine learning for traffic flow identification 
[51, 56]. Some of these work focus on application identification [49, 54, 55], while others on 
discovering underlines rules that governs the communication over a network [53]. The aim of 
profile-based accountability goes beyond traffic classification. It should infer the demand 
subscribers are requesting from the network, so that the network resources can be fairly 
allocated and accountability properly imposed respecting the contract subscribers have with 
their operator. Machine learning is expected to strongly contribute to this task. The 
architectural specification of the desired system, in terms of interaction with the 
routing/forwarding system and inputs and outputs to the machine-learning algorithms are 
described in more detail in the next subsections. 

9.3.1 Type of Routing/Forwarding Engine 
The task of the machine-learning algorithm is two-folded, first to define the profiles and 
secondly to classify (with a certain metric) traffic usage according to the profiles. The first 
problem requires that the system be distributed, such that the data set encompasses all 
possible subscribers’ traffic. The broader the dataset is implies in a richer, i.e. more general, 
input for the learning systems. The PBA-engine would require exchanging information to 
achieve the distributed scheme, thus each system would receive inputs and provide outputs to 
other nodes. The second problem, i.e. classification can be achieved in a decentralized 
manner, since the system is already distributed for the first problem. Classification decision 
can take advantage of the resources and capabilities of all the distributed PBA-Engines.  

9.3.2. Inputs to the Machine Learning Module 
The inputs for the machine-learning module are deduced from measurements that characterize 
the subscribers network traffic (see Sec. 9.1.1.2). Those measurements describe the 
information over connectivity and dynamicity of the traffic, capturing the behavior and 
activities of packets flows. However, more importantly the inputs should capture information 
of the subscribers network demand, and the resources and availability of the network as a 
whole. So qualitatively, the system has to be able to yield profiles, which encompass 
information on both the load, the subscribers is requesting from the network and at the same 
time indicate the present network load. Quantitatively, it is clear that inputs can assume 
different types such as bit, integer, real or words from some alphabet. Moreover, time is a 
fundamental element. These parameters varies in time, and so does the fundamental aspect 
that we try to model, i.e. the profiles that reflects the different subscribers’ traffic pattern 
behavior.  

9.3.3 Outputs to the Machine Learning Module 
There are two major tasks expected from the learning system, which will define two types of 
output, one for the profile learning stage and the second for the profile prediction stage, or in 
our case the profile classification stage. Profile learning refers to the process of defining or 
categorizing profiles. In this stage the output from the input variables can determine the 
partition of the dataset into different clusters, with each cluster characterizing a profile. Each 
profile indicates specific network traffic behavior associated with the usage and demand on 
the network resources. Ideally, the learning algorithm would be an online, distributed semi-
supervised or unsupervised system, where PBA-engine would reside in access nodes within 
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an ISP. Profile prediction refers to the classification process of users according to the learned 
profiles. The output of this stage should be a classification decision to one of the possible 
classes. In addition, a proximity metric, indicated by a numerical value, should reflect the 
distance subscribers are in respect to the possible profiles. This information could be used to 
quantify to what level subscribers are breaching their network accountability.  

9.3.4 Interaction with the Routing/Forwarding Engine  
At this stage, the results of the process described for the PBA-engine is expected to have at 
most passive influence on the routing system, for example triggering protocol flags such as in 
Explicit Congestion Notification (ECN). Most likely, it will act on the forwarding system, by 
either trying to bring the subscriber to the assigned profile or by punishing the subscriber, for 
example by delaying or just dropping packets. Moreover, what is required from the system is 
a continuous monitoring of subscribers’ profile information.  

10. Analysis Grid 
This section introduces an analysis grid of the network and system architecture (as detailed in 
Sec. 5) against the use cases described in Sec. 6, 7, 8, and 9. The objective of this analysis 
grid is to determine the architectural items that will be further investigated throughout the 
project lifetime and reach a common/reference architectural framework. This analysis will 
consist in a functional analysis and a performance analysis. 

10.1. Functional Analysis 
To determine the characteristics of the proposed experimental architecture against the closed 
control loop (detection, processing, decision, and execution) functional analysis will be 
performed using a pre-defined set of functional criteria. Assessing the degree of conformance 
of the experimental architecture and its capabilities with respect to the closed control loop 
depicted in Fig. 10.1 is the main objective of this analysis. Note that the functional blocks 
depicted in this figure may be the object of further decomposition. 
 

 
 

Figure 10.1: Closed control loop 
 

Indeed, as more than one design may be proposed, functional analysis is a powerful tool to 
determine the support level of each functionality by the experimental architecture depicted in 
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Section 5. Our functional analysis study will also provide the exact implications in terms of 
correlation/dependency and constraints the supported feature imply on other features. 

10.1.1 Criteria 
Functional analysis criteria are provided to evaluate and assess the level of conformance of a 
given design. They translate the fundamental networking rules (also referred to as network 
design principles) that allow the identification of the forwarding, routing and machine 
learning needs when assessed against the needs resulting from the design of a closed control 
loop. 

10.1.2. Methodology 
Different attempts to define software quality as a complex concept that can be decomposed in 
more detailed characteristics have been presented since 1970s, e.g. McCall et al, 1977. The 
key idea was to enable evaluation of quality through the evaluation of more detailed 
characteristics that are supposed to be easy to measure or assess. Standardized quality models 
based on this idea, e.g. ISO 9126 were subsequently developed based on this concept. 
 
McCall’s Quality Factors (McCall, Richards, Walters; 1977) provides a direction towards 
measuring software quality. This model that aims at system developers during the software 
development process identifies 3 areas of software work: 

• Product Operation: refers to the product’s ability to be quickly understood, efficiently 
operated and capable of providing the results required by the user 

• Production Revision: relates to error correction and system adaptation 
• Product Transition: distributed processing, rapid change in hardware 

 
McCall expressed software quality in terms of 11 measurable quality factors. These 11 
quality factors focus on three important aspects of a software product. Some of the quality 
factors are responsible for successful product operation; some of the quality factors are 
responsible for successful product revision and some are responsible for successful product 
transition. The 11 quality factors are grouped with respect to these 3 areas of work: 
 
Product operation: 

• Correctness: the extent to which a program satisfies its specification and fulfills 
customer’s mission objective. 

• Reliability: the extent to which a program can be expected to perform its intended 
function with required precision. 

• Usability: the effort required to learn, operate/use, prepare input, and interpret output 
of a program. 

• Integrity: the extent to which access to software or data by unauthorized persons can 
be controlled. 

• Efficiency: the amount of computing resources and code required by a program to 
perform its functions. 

 
Product revision: 

• Flexibility: the effort required to modify an operational program. 
• Testability: the effort required to test a program to ensure that it performs it’s intended 

functions. 
• Maintainability: the effort required to locate and fix an error in a program. 
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Product transition: 
• Portability: the effort required to transfer the program from one hardware and/or 

software system environment to another. 
• Reusability: the extent to which a program or parts of a program can be reused in 

another application. 
• Interoperability: the effort required to couple one system to another. 

 
All the quality factors mentioned above depends upon set of 22 metrics; and the dependency 
can be given by the following formula: 
 

Fq = c1 m1 + c2 m2 + … + cn mn 
 

where,  
Fq is the software Quality Factor; 
cn are the regression coefficient such c1 + c2 + … + cn = 1.0 
mn are the metrics  

 
Most of these metrics (listed here below) can be measured subjectively. These metrics can be 
used in the form of a check list. The grading scheme for each of the 22 metrics is between 0 
(low) and 10 (high). The value of the regression co-efficient is dependent upon the products 
and the weight given for that particular metrics.     
 
The 22 metrics (or criteria) are defined as follows: 

• Auditability: the ease with which conformance to standards can be checked. 
• Accuracy: the precision of computation and control. 
• Communication Commonality: the degree to which standard interfaces, protocols and 

bandwidth are used. 
• Completeness: the degree to which full implementation of required function has been 

achieved. 
• Complexity: the degree to which the program is complex (complexity metric) 
• Conciseness: the compactness of the program in terms of lines of codes. 
• Consistency: the use of uniform design and documentation technique throughout the 

software development project. 
• Data Commonality: the use of standard data structures and types throughout the 

program.  
• Error Tolerance: the damage that occurs when the program encounters an error 
• Execution Efficiency: the run time performance of a program. 
• Expandability: the degree to which architectural, data or procedural data can be 

extended. 
• Generality: the breadth of potential application of program components. 
• Hardware Independence: the degree to which the software is decoupled from the 

hardware on which it operates. 
• Instrumentation: the degree to which the program monitors it’s own operation and 

identifies errors that do occur. 
• Modularity: the functional independence of program components. 
• Operability: the ease of operation of a program. 
• Security: the availability of mechanisms that control or protect programs and data. 
• Self-Documentation: the degree to which the source code provides meaningful 

documentation. 
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• Simplicity: the degree to which a program can be understood without difficulty. 
• Software System Independence: the degree to which the program is independent of 

nonstandard programming language features, operating system characteristics, and 
other environmental constraints. 

• Traceability: the ability to trace a design representation or actual program component 
back to requirements. 

• Training: the degree to which the software assists in enabling new users to apply the 
system.  

 
Each of these metrics contributes to one or more quality factors, as shown in Table 1 (Source: 
Roger S. Pressman, “Software Engineering: A Practitioner’s Approach” (European 
Adaptation), Ch. 19, Fifth Edition, 2000). Note that the weight given to each metric depends 
on individual products and concerns. 
 

Table 1: Relationships between McCall’s quality factors and metrics 
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10.2. Performance Analysis 

10.2.1. Performance Analysis 
Performance analysis will be conducted by considering the following events classes: 

• External events resulting in deviation(s) from initial performance objectives 
(resource-oriented, traffic-oriented)  

• Internal events resulting in deviation(s) from initial performance objectives (resource-
oriented, traffic-oriented) 

 
These events will be used to experiment of the Machine Learning Engine and determine the 
suitability and sustainability of the proposed architecture under various running conditions 
and constraints.  
 
The definition of i) performance objectives and ii ) conditions and constraints are use case 
dependent and they will be detailed in the next revision of this document. 

10.2. Sensitivity Analysis 

10.2.1 Overview  
Large-scale experimentation models (simulations, emulations, etc.) often involve a large 
number of parameters, making it prohibitive to run more than a small fraction of all 
potentially relevant cases. In this context, sensitivity analysis attempts to identify how 
responsive the results of an experimental model are to changes in its parameters: this is an 
important tool for achieving confidence in experimentation and making its results credible. 
The general goal of Sensitivity Analysis is to characterize, qualitatively or quantitatively, 
what impact on a system a particular variable will have if it differs from what was previously 
assumed. In other words, by using Sensitivity Analysis, the analyst can determine how 
changes in one or several parameters will impact the target variable. 
 
Sensitivity analysis quantifies the dependence of system behavior on the parameters that 
affect the modeled process and in particular its dynamics. It is used to determine how 
sensitive a model is to i) changes in the numerical value of the model parameters: parameter 
sensitivity analysis aims at determining the uncertainty associated with the numerical values 
of model parameters (resulting thus in parameter estimation but also prediction). In this case, 
sensitivity analysis is used to increase the confidence in the model and its predictions, by 
providing an understanding of how the model responds to changes in its parameters, and ii) 
changes in the structure of the model. 
 
In the present case, we will perform sensitivity analysis on  

• Detection/identification time, and rate:  
o on traffic variations (for forwarding dependent cases) 
o on routing information/ topology variations (for routing dependent cases) 
o etc. 

• Execution (re-configuration/re-organization) time, and scope: on decision sequence(s) 
so as to determine/identify conditions for  

o Oscillations effects leading to action/reaction chains  
o Coupling effects leading to amplification/annealing chains 
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10.2.2 Sensitivity Analysis Methods 

Perturbation Theory based methods: study a set of models which are different from a 
nominal model by some small terms. Sensitivity Analysis is closely linked with Perturbation 
Theory. Perturbation Theory comprises mathematical methods that are used to find an 
approximate solution to a problem which cannot be solved exactly, by starting from the exact 
solution of a related problem. Perturbation Theory can be applied if the problem under study 
can be formulated by adding a “small” term to the mathematical description of the exactly 
solvable problem. Thus, Perturbation theory can be viewed as a tool for Sensitivity Analysis. 
Furthermore, it can be classified as an analytic tool for the Sensitivity Analysis. The main 
types of mathematical models for perturbation methods are. 

• Linear Algebraic Systems 
• Non-linear Algebraic Systems 
• Mathematical programming 

 
The advantage of analytic Perturbation Theory based methods is that these methods are based 
on a solid theoretical ground. The disadvantage of the analytic methods is that typically the 
deviations of parameters need to be small and a good knowledge of the system’s 
structure/dynamics is required.  
 
The other class of tools for Sensitivity Analysis is Sampling based methods. Analytical 
methods require a good knowledge of the system and might require tedious calculations. The 
sampling based methods are designed to overcome these disadvantages. Sampling methods 
are particularly well suited to withstand the changing one-factor-at-a-time (OAT) paradox.  

• FAST (Fourier Amplitude Sensitivity Test): method which deals with static models. 
The main idea of FAST is to assign to each parameter a distinct integer frequency 
(characteristic frequency). Then, for a specific parameter, the variance contribution 
can be singled out of the model output with the help of the Fourier transformation. 
FAST is considered to be one of the most efficient methods in sensitivity analysis 
[ref]. Among its advantages are: fast implementation, deals with non-monotonic 
models, allows arbitrary large variations in input parameters, and does not require the 
knowledge of the mathematical model. The latter two features are in particular 
positively distinguishing FAST from analytical methods. However, FAST suffers 
from computational complexity for a large number of inputs. Moreover, the basic 
FAST method can only be applied to static models with independent parameters. As, 
in many cases the parameters are correlated with one another, extended FAST 
(EFAST) has been proposed for models with correlated parameters i.e. EFAST can 
address higher order interactions (see Saltelli98).  

• Path based Sensitivity Analysis (of Markov Chains) for dynamical systems: the key 
idea in path-based sensitivity analysis of Markov chains is the observation that a 
sufficiently long sample path contains enough random deviations to test the system 
sensitivity. 

 
Sampling based methods do not require access to model equations or even the model code. 
These methods require running a series of experiments. Experiments can be either real-life or 
numerical. The disadvantage of the sampling based methods is that the number of 
experiments required can be very large. 
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11. Conclusion 
The goal of the ECODE project is to develop, implement, and validate experimentally a 
cognitive routing system that can meet the challenges experienced by the Internet in terms of 
manageability and security, availability and accountability, as well as routing system 
scalability and quality. By combining both networking and machine learning research fields, 
the resulting cognitive routing system fundamentally revisits the capabilities of the Internet 
networking layer so as to address these challenges altogether. 
 
Our first goal, in this deliverable, is to deeply discuss the ECODE architecture. We provide a 
two levels architecture: the system and the network architecture. On one hand, the system 
architecture deals with how the ECODE project improves the current router architecture.  
Mainly, the improvement resides in the addition of the Machine Learning Engine. This engine 
will be in relation with the already existing routing and forwarding engines. We also 
introduce a fourth engine, the Monitoring Engine that aims at collecting path performance 
information. On the other hand, the network architecture aims at explaining where the 
ECODE contributions are located in the network. We explain that there exist various types of 
routers, i.e., internal, edge, and access routers. Depending on the use case, the contributions 
will be located in one (or several) of these routers. 
 
Next, we provide a general insight in machine learning techniques. We discuss the learning 
techniques: supervised (output prediction for a novel input after learning on a training 
dataset), unsupervised (learning useful structure without any kind of information beyond the 
raw data and grouping principles), on-line (the training data is provided to the learning 
algorithm as a batch process), and distributed learning (distribution of the prediction or the 
data to analyze). 
 
ECODE is an experimentally driven research project built on use cases. In this deliverable, we 
deeply discuss all use cases considered in the project. We also explain how the use case will 
make use of machine learning techniques and how they will be integrated in the ECODE 
architecture, at the system and network levels. Subsequent implementation of these use cases 
is expected to provide precious input on suitability of the proposed architecture as well as 
sufficient results to assess added value of machine learning. 
 
Thus, in the current state of the project, we cannot claim that the network and system 
architecture provided in this document is the final one. Instead, during the whole project 
duration, the architecture feasibility will be evaluated and, necessarily, adapted so that, by the 
end of the project, we will have converged towards a workable architecture. 
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